设置 TORCH_CUDA_ARCH_LIST 环境变量主要有以下几个好处:
-
编译时间:当你从源代码编译PyTorch或其他依赖CUDA的库时,指定特定的CUDA架构可以减少编译时间。默认情况下,库可能会为所有支持的CUDA架构生成二进制代码,这可能需要相当长的时间。如果你只指定自己实际使用的那些架构,就可以节省大量时间。
-
磁盘空间:预编译的二进制文件可能会占用大量磁盘空间。通过限制要支持的CUDA架构数量,可以减少这些文件所需的存储空间。
-
运行性能:在某些情况下(尤其是在使用老旧GPU时),为特定架构优化过的代码可能比通用代码运行得更快。
python -c "import torch; print(torch.cuda.get_device_capability())"
>>> (8, 0) # 对应的就是 8.0
在安装环境的时候可以使用 TORCH_CUDA_ARCH_LIST=“8.0” python setup.py install 来安装,能加速
本文介绍了设置TORCH_CUDA_ARCH_LIST环境变量在PyTorch编译中的优势,包括减少编译时间、节省磁盘空间和提升特定GPU架构的运行性能。通过指定特定CUDA版本,安装过程会加速并针对性地优化代码。
1505

被折叠的 条评论
为什么被折叠?



