【基础知识】5、相机内外参矩阵和坐标变换

文章目录

1、世界坐标系和相机坐标系的关系:

从世界坐标系到相机坐标系,涉及到物体的旋转和平移。绕着不同的坐标轴旋转不同的角度,得到相应的旋转矩阵。如下图所示:

在这里插入图片描述
于是,从世界坐标系到相机坐标系,涉及到旋转和平移(其实所有的运动也可以用旋转矩阵和平移向量来描述)。绕着不同的坐标轴旋转不同的角度,得到相应的旋转矩阵,如下图所示:

在这里插入图片描述
在这里插入图片描述
于是可以得到 P 点在相机坐标系下的坐标:
在这里插入图片描述
从相机坐标系到图像坐标系,属于透视投影关系,从3D转换到2D。
在这里插入图片描述

2、齐次坐标系:

齐次坐标就是将一个原本是n维的向量用一个n+1维向量来表示,是指一个用于投影几何里的坐标系统,如同用于欧氏几何里的笛卡儿坐标一般。英文名称Homogeneous coordinate system。也就是说Homogeneous国内翻译为“齐次”。

二维点(x,y)的齐次坐标表示为(hx,hy,h)。由此可以看出,一个向量的齐次表示是不唯一的,齐次坐标的h取不同的值都表示的是同一个点,比如齐次坐标(8,4,2)、(4,2,1)表示的都是二维点(4,2)。

齐次坐标表示是计算机图形学的重要手段之一,它既能够用来明确区分向量和点,同时也更易用于进行仿射(线性)几何变换。”—— F.S. Hill, JR。

给出点的齐次表达式[X Y H],就可求得其二维笛卡尔坐标,即 [ X   Y   H ] → = [ X / H   Y / H   H / H ] → = [ x   y   1 ] [X\ Y \ H]→=[X/H\ Y/H \ H/H]→= [x\ y \ 1] [X Y H]→=[X/H Y/H H/H]→=[x y 1], 这个过程称为归一化处理。 在几何意义上,相当于把发生在三维空间的变换限制在H=1的平面内。
在这里插入图片描述

许多图形应用涉及到几何变换,主要包括平移、旋转、缩放。以矩阵表达式来计算这些变换时,平移是矩阵相加,旋转和缩放则是矩阵相乘,综合起来可以表示为p’ = m1p+ m2(注:因为习惯的原因,实际使用时一般使用变化矩阵左乘向量)(m1旋转缩放矩阵, m2为平移矩阵, p为原向量 ,p’为变换后的向量)。引入齐次坐标的目的主要是合并矩阵运算中的乘法和加法,表示为p’ = Mp的形式。
在这里插入图片描述

你会发现(1, 2, 3), (2, 4, 6) 和(4, 8, 12)对应同一个Euclidean point (1/3, 2/3),任何标量的乘积,例如(1a, 2a, 3a) 对应 笛卡尔空间里面的(1/3, 2/3) 。因此,这些点是“齐次的”,因为他们代表了笛卡尔坐标系里面的同一个点。换句话说,齐次坐标有规模不变性。

使用齐次坐标的另一个好处是,能够表示n维空间中的无穷远点,即(x1,x2,…,xn,0)表示n维空间中无穷远点,而它在n+1维空间中该点是在有限区域内的。有了上面的齐次坐标的概念,我们就可以把上面三种变换的形式统一起来。

在这里插入图片描述
3、相机坐标系

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
四个坐标轴的变换关系:
在这里插入图片描述
(1)从 world 到 camera
在这里插入图片描述
(2)从camera到image
在这里插入图片描述
(3)从 image 到 pixel
在这里插入图片描述
(4)从world 到 pixel
在这里插入图片描述
在这里插入图片描述

  • 36
    点赞
  • 146
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

呆呆的猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值