【Python机器学习】标注任务与序列问题讲解(图文解释)

本文介绍了标注模型在处理有前后关联关系的序列问题中的应用,包括概率模型和神经网络模型,如循环神经网络(RNN)。序列任务还包括序列聚类、序列回归和序列分类等。在标注过程中,模型通过学习条件概率或神经网络映射,预测输入序列的对应标签序列。
摘要由CSDN通过智能技术生成

标注模型用于处理有前后关联关系的序列问题。在预测时,它的输入是一个观测序列,该观测序列的元素一般具有前后的关联关系。它的输出是一个标签序列,也就是说,标注模型的输出是一个向量,该向量的每个元素是一个标签,它们与输入序列的元素一一对应。标签的值是有限的离散值。

标注任务

记输入的序列为x=(x^(1),x^(2),…,x^(n)),输出的标签序列为y=(y^(1),y^(2),…,y^(n))。

标注任务分为学习过程和标注过程。

可完成标注任务的模型有概率模型和神经网络模型两类。

概率模型在学习过程学习到从序列x到序列y的条件概率:

 

概率模型在标注过程按照学习得到的条件概率分布模型,以概率值最大的方式对新的输入序列找到相应的输出标签序列。

具体来讲,就是对一个输入的测试序列x=(x^(1),x^(2),…,x^(n))找到使条件概率P ̂(y^(1),y^(2),…,y^(n)|x^(1),x^(2),…,x^(n))最大的标记序列y ̂=(y ̂^(1),y ̂^(2),…,y ̂^(n))。 

神经网络模型在学习过程建立起能正确反映从序列x到序列y的映射关系的神经网络N(S,W),并在标注过程将测试序列x=(x^(1),x^(2),…,x^(n))馈入神经网络,得到输出序列y ̂=(y ̂^(1),y ̂^

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

showswoller

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值