Windows下部署QWen2.5-1.5B进行大模型开发

安装Ollama

下载安装程序。

https://ollama.com/download

在这里插入图片描述

下载后,得到如下安装文件。

OllamaSetup.exe

运行安装程序。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

安装的一些信息,可以从下面的路径查找。

C:\Users\jihui\AppData\Local\Programs\Ollama

这是安装时,使用的主机信息,使用了11434端口。

OLLAMA_HOST:http://127.0.0.1:11434

安装QWen2.5

ollama run qwen2.5:1.5b

在这里插入图片描述

大约10分钟后

在这里插入图片描述

我们可以直接输入信息,大模型进行回复。

在这里插入图片描述

至此,大模型已经安装完成。

在这里插入图片描述

安装使用的为6G显存的3090,安装后,只使用了2.4G。使用游戏笔记本电脑,完全可以部署一个大模型,供本地学习。

如何进行代码访问

准备虚拟环境

(ollama) C:\Users\jihui>pip list
Package           Version
----------------- -----------
annotated-types   0.7.0
anyio             4.6.2.post1
certifi           2024.8.30
colorama          0.4.6
distro            1.9.0
exceptiongroup    1.2.2
h11               0.14.0
httpcore          1.0.7
httpx             0.27.2
idna              3.10
jiter             0.8.2
ollama            0.4.2
openai            1.58.1
pip               24.2
pydantic          2.10.3
pydantic_core     2.27.1
setuptools        75.1.0
sniffio           1.3.1
tqdm              4.67.1
typing_extensions 4.12.2
wheel             0.44.0

(ollama) C:\Users\jihui>

编写代码

from openai import OpenAI

openai_api_key = "EMPTY"
openai_api_base = "http://127.0.0.1:11434/v1"

client = OpenAI(api_key=openai_api_key,
                    base_url=openai_api_base)

models = client.models.list()

print(models)

# C:\anaconda3\envs\ollama\python.exe C:/Code/ollama/demo_qwen_with_ollama.py
# SyncPage[Model](data=[Model(id='qwen2.5:1.5b', created=1735538296, object='model', owned_by='library')], object='list')
#
# Process finished with exit code 0

model = "qwen2.5:1.5b"

role = "You are a helpful assistant"

query = "234加上567的和是多少?"

temperature = 0.7

chat_completion = client.chat.completions.create(
    model=model,
    messages=[
        {
            "role": "system", "content": role
        },
        {
            "role": "user", "content": query
        }
    ],
    temperature=temperature
)

content = chat_completion.choices[0].message.content

print(content)

# C:\anaconda3\envs\ollama\python.exe C:/Code/ollama/demo_qwen_with_ollama.py
# SyncPage[Model](data=[Model(id='qwen2.5:1.5b', created=1735538296, object='model', owned_by='library')], object='list')
# 234加上567的和是801。
#
# Process finished with exit code 0

关于模型名称

可以使用ollama list获取。

(ollama) C:\Users\jihui>ollama list
NAME            ID              SIZE      MODIFIED
qwen2.5:1.5b    65ec06548149    986 MB    39 minutes ago

(ollama) C:\Users\jihui>

或者使用openai的客户端

models = client.models.list()

print(models)

输出的模型信息中,包含可用的模型名称。

C:\anaconda3\envs\ollama\python.exe C:/Code/ollama/demo_qwen_with_ollama.py
SyncPage[Model](data=[Model(id='qwen2.5:1.5b', created=1735538296, object='model', owned_by='library')], object='list')

Process finished with exit code 0

好了,可以开启你的大模型开发之旅了。

ollama常用命令

PS C:\Users\jihui> ollama
Usage:
  ollama [flags]
  ollama [command]

Available Commands:
  serve       Start ollama
  create      Create a model from a Modelfile
  show        Show information for a model
  run         Run a model
  stop        Stop a running model
  pull        Pull a model from a registry
  push        Push a model to a registry
  list        List models
  ps          List running models
  cp          Copy a model
  rm          Remove a model
  help        Help about any command

Flags:
  -h, --help      help for ollama
  -v, --version   Show version information

Use "ollama [command] --help" for more information about a command.

PS C:\Users\jihui> ollama ps
NAME    ID    SIZE    PROCESSOR    UNTIL

PS C:\Users\jihui> ollama list
NAME            ID              SIZE      MODIFIED
qwen2.5:1.5b    65ec06548149    986 MB    10 minutes ago
PS C:\Users\jihui>
### 部署 Qwen2.5-1.5B-Instruct 模型 为了成功部署 `Qwen2.5-1.5B-Instruct` 模型,需遵循一系列配置和环境准备步骤。该模型属于 Qwen2.5-Coder 系列的一部分,在同等尺寸下具有最优性能表现[^2]。 #### 准备工作 确保拥有足够的硬件资源支持 1.5B 参数量级的模型运行。通常情况下,建议至少配备有 NVIDIA GPU 的服务器或工作站,内存不少于 16GB RAM,并安装好 CUDA 工具包以及 PyTorch 或 TensorFlow 运行库。 #### 获取模型文件 访问官方发布的存储位置下载对应版本的预训练权重文件。对于 `Qwen2.5-1.5B-Instruct` 版本而言,应当确认所使用的 `'model'` 路径设置为 `/qwen2.5-1.5b-instruct` 并且路径指向实际存在的本地目录或是远程仓库中的具体地址[^1]。 #### 安装依赖项 通过 pip 命令来安装必要的 Python 库: ```bash pip install transformers torch sentencepiece accelerate ``` 这些工具提供了加载 Hugging Face 上托管的大规模语言模型所需的功能接口和支持多线程加速的能力。 #### 加载并启动服务 编写简单的脚本来初始化模型实例并将其实例化对象暴露给 HTTP API 接口供外部调用: ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = AutoTokenizer.from_pretrained("/path/to/qwen2.5-1.5b-instruct") model = AutoModelForCausalLM.from_pretrained("/path/to/qwen2.5-1.5b-instruct").to(device) def generate_response(prompt): inputs = tokenizer(prompt, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_length=50) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response ``` 此代码片段展示了如何利用 Transformers 库快速创建基于指定架构的语言生成器,并定义了一个函数用于处理输入提示词进而返回由模型产生的回复文本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值