第四章 Markov链(1)
1.Markov链的基本信息
Markov性:即无后效性。如果定义
{
X
n
=
i
}
\{X_n=i\}
{Xn=i}为随机过程
X
X
X在
n
n
n时刻位于状态
i
i
i,则Markov性表现为:对任意
n
≥
0
n\ge0
n≥0,任意状态
i
,
j
,
i
0
,
i
1
,
⋯
,
i
n
−
1
i,j,i_0,i_1,\cdots,i_{n-1}
i,j,i0,i1,⋯,in−1,有
P
(
X
n
+
1
=
j
∣
X
n
=
i
,
X
n
−
1
=
i
n
−
1
,
⋯
,
X
0
=
i
0
)
=
P
(
X
n
+
1
=
j
∣
X
n
=
i
)
P(X_{n+1}=j|X_n=i, X_{n-1}=i_{n-1},\cdots,X_0=i_0)=P(X_{n+1}=j|X_n=i)
P(Xn+1=j∣Xn=i,Xn−1=in−1,⋯,X0=i0)=P(Xn+1=j∣Xn=i)
Markov链:对于随机过程
X
\boldsymbol X
X,它的状态空间至多包含可数个状态即
E
=
{
e
1
,
e
2
,
⋯
,
e
N
}
,
N
≤
∞
\mathcal E=\{e_1,e_2,\cdots,e_N\},N\le \infty
E={e1,e2,⋯,eN},N≤∞,可以把状态空间简化为
E
=
{
1
,
2
,
⋯
,
N
}
\mathcal E=\{1,2,\cdots,N\}
E={1,2,⋯,N}。若
X
\boldsymbol X
X具有Markov性,则称
X
\boldsymbol X
X是Markov链。
-
记 p n ; i j = P ( X n + 1 = j ∣ X n = i ) p_{n; ij}=P(X_{n+1}=j|X_n=i) pn;ij=P(Xn+1=j∣Xn=i),称之为Markov链在 n n n时刻从状态 i i i转移到状态 j j j的概率。
-
如果 p n ; i j p_{n;ij} pn;ij与 n n n无关,即任何时候从状态 i i i转移到状态 j j j的概率不变,则称 X \boldsymbol X X为时间齐次Markov链,这是我们主要讨论的Markov链。
-
对于时间齐次Markov链,令
P = ( p 11 p 12 ⋯ p 1 N p 21 p 22 ⋯ p 2 N ⋮ ⋮ ⋮ p N 1 p N 2 ⋯ p N N ) \boldsymbol P=\left( \begin{matrix} p_{11}&p_{12}&\cdots&p_{1N}\\ p_{21}&p_{22}&\cdots&p_{2N}\\ \vdots&\vdots&&\vdots\\ p_{N1}&p_{N2}&\cdots&p_{NN} \end{matrix} \right) P=⎝⎜⎜⎜⎛p11p21⋮pN1p12p22⋮pN2⋯⋯⋯p1Np2N⋮pNN⎠⎟⎟⎟⎞
为Markov链的状态转移矩阵,这里有 ∑ j = 1 N p i j = 1 \sum_{j=1}^N p_{ij}=1 ∑j=1Npij=1。 -
Markov链的分布规律完全由初始分布 p 0 \boldsymbol p_0 p0与状态转移矩阵 P \boldsymbol P P确定。
描述Markov链,可以用状态转移矩阵 P \boldsymbol P P和有向图 ( V , G ) (V,G) (V,G),这里 V V V表示顶点集, G G G表示边集。
2.Markov链的分布
Markov链的初始分布指的是 p 0 = ( p 0 ( 1 ) , ⋯ , p 0 ( N ) ) \boldsymbol p_0=(p_0(1),\cdots,p_0(N)) p0=(p0(1),⋯,p0(N)),这里 p 0 ( i ) = P ( X 0 = i ) p_0(i)=P(X_0=i) p0(i)=P(X0=i)。初始分布用来描述 X \boldsymbol X X的初始状态分布规律,通常是可选择、可控制的。同理, X k X_k Xk的分布记作 p k = ( p k ( 1 ) , ⋯ , p k ( N ) ) \boldsymbol p_k=(p_k(1),\cdots,p_k(N)) pk=(pk(1),⋯,pk(N))。
对于Markov链的一维分布,有
p
1
(
j
)
=
∑
i
=
1
N
p
0
(
i
)
p
i
j
p
1
=
(
p
1
(
1
)
,
⋯
,
p
1
(
N
)
)
=
(
∑
i
=
1
N
p
0
(
i
)
p
i
1
,
⋯
,
∑
i
=
1
N
p
0
(
i
)
p
i
N
)
=
(
p
0
(
1
)
,
⋯
,
p
0
(
N
)
)
⋅
(
p
11
p
12
⋯
p
1
N
p
21
p
22
⋯
p
2
N
⋮
⋮
⋮
p
N
1
p
N
2
⋯
p
N
N
)
=
p
0
P
p
n
=
p
0
P
n
\begin{aligned} p_1(j)=&\sum_{i=1}^N p_0(i)p_{ij}\\ \\ \boldsymbol p_1=&(p_1(1),\cdots,p_1(N))\\ =&\left( \sum_{i=1}^N p_0(i)p_{i1}, \cdots, \sum_{i=1}^N p_0(i)p_{iN} \right)\\ =&(p_0(1), \cdots,p_0(N))\cdot\left( \begin{matrix} p_{11}&p_{12}&\cdots&p_{1N}\\ p_{21}&p_{22}&\cdots&p_{2N}\\ \vdots&\vdots&&\vdots\\ p_{N1}&p_{N2}&\cdots&p_{NN} \end{matrix} \right)\\ =&\boldsymbol p_0\boldsymbol P\\ \\ \boldsymbol p_{n}=&\boldsymbol p_0 \boldsymbol P^n \end{aligned}
p1(j)=p1====pn=i=1∑Np0(i)pij(p1(1),⋯,p1(N))(i=1∑Np0(i)pi1,⋯,i=1∑Np0(i)piN)(p0(1),⋯,p0(N))⋅⎝⎜⎜⎜⎛p11p21⋮pN1p12p22⋮pN2⋯⋯⋯p1Np2N⋮pNN⎠⎟⎟⎟⎞p0Pp0Pn
由此得到
n
n
n步转移矩阵为
P
(
n
)
=
P
n
\boldsymbol P^{(n)}=\boldsymbol P^n
P(n)=Pn,刚好是一步转移矩阵的
n
n
n次方。记
n
n
n步转移概率为
p
i
j
(
n
)
p^{(n)}_{ij}
pij(n),它表示初始状态为
i
i
i时经过
n
n
n步到达状态
j
j
j的概率(一般约定
p
i
j
(
n
)
=
1
p_{ij}^{(n)}=1
pij(n)=1当且仅当
i
=
j
i=j
i=j,否则
p
i
j
(
n
)
=
0
p_{ij}^{(n)}=0
pij(n)=0),
P
(
n
)
=
(
p
i
j
(
n
)
)
n
×
n
\boldsymbol P^{(n)}=(p^{(n)}_{ij})_{n\times n}
P(n)=(pij(n))n×n。
以此可以推断
P
(
m
+
n
)
=
P
m
+
n
=
P
m
P
n
=
P
(
m
)
P
(
n
)
\boldsymbol P^{(m+n)}=\boldsymbol P^{m+n}=\boldsymbol P^m\boldsymbol P^n=\boldsymbol P^{(m)}\boldsymbol P^{(n)}
P(m+n)=Pm+n=PmPn=P(m)P(n),也就是
p
i
j
(
m
+
n
)
=
∑
k
=
1
N
p
i
k
(
m
)
p
k
j
(
n
)
p_{ij}^{(m+n)}=\sum_{k=1}^N p_{ik}^{(m)}p_{kj}^{(n)}
pij(m+n)=k=1∑Npik(m)pkj(n)
这被称为Chapman-Kolmogorov方程。
任意有限维分布,则有
P
(
X
0
=
i
0
,
X
1
=
i
1
,
⋯
,
X
n
=
i
n
)
=
P
(
X
0
=
i
0
)
P
(
X
1
=
i
1
∣
X
0
=
i
0
)
⋯
P
(
X
n
=
i
n
∣
X
n
−
1
=
i
n
−
1
,
⋯
,
X
0
=
i
0
)
=
p
0
(
i
0
)
p
i
0
i
1
p
i
1
i
2
⋯
p
i
n
−
1
i
n
\begin{aligned} &P(X_0=i_0,X_1=i_1,\cdots,X_n=i_n)\\ =&P(X_0=i_0)P(X_1=i_1|X_0=i_0)\cdots P(X_n=i_n|X_{n-1}=i_{n-1},\cdots,X_0=i_0)\\ =&p_0(i_0)p_{i_0i_1}p_{i_1i_2}\cdots p_{i_{n-1}i_n} \end{aligned}
==P(X0=i0,X1=i1,⋯,Xn=in)P(X0=i0)P(X1=i1∣X0=i0)⋯P(Xn=in∣Xn−1=in−1,⋯,X0=i0)p0(i0)pi0i1pi1i2⋯pin−1in