06.第四章 Markov链(1)

第四章 Markov链(1)

1.Markov链的基本信息

Markov性:即无后效性。如果定义 { X n = i } \{X_n=i\} {Xn=i}为随机过程 X X X n n n时刻位于状态 i i i,则Markov性表现为:对任意 n ≥ 0 n\ge0 n0,任意状态 i , j , i 0 , i 1 , ⋯   , i n − 1 i,j,i_0,i_1,\cdots,i_{n-1} i,j,i0,i1,,in1,有
P ( X n + 1 = j ∣ X n = i , X n − 1 = i n − 1 , ⋯   , X 0 = i 0 ) = P ( X n + 1 = j ∣ X n = i ) P(X_{n+1}=j|X_n=i, X_{n-1}=i_{n-1},\cdots,X_0=i_0)=P(X_{n+1}=j|X_n=i) P(Xn+1=jXn=i,Xn1=in1,,X0=i0)=P(Xn+1=jXn=i)
Markov链:对于随机过程 X \boldsymbol X X,它的状态空间至多包含可数个状态即 E = { e 1 , e 2 , ⋯   , e N } , N ≤ ∞ \mathcal E=\{e_1,e_2,\cdots,e_N\},N\le \infty E={e1,e2,,eN},N,可以把状态空间简化为 E = { 1 , 2 , ⋯   , N } \mathcal E=\{1,2,\cdots,N\} E={1,2,,N}。若 X \boldsymbol X X具有Markov性,则称 X \boldsymbol X X是Markov链。

  • p n ; i j = P ( X n + 1 = j ∣ X n = i ) p_{n; ij}=P(X_{n+1}=j|X_n=i) pn;ij=P(Xn+1=jXn=i),称之为Markov链在 n n n时刻从状态 i i i转移到状态 j j j的概率。

  • 如果 p n ; i j p_{n;ij} pn;ij n n n无关,即任何时候从状态 i i i转移到状态 j j j的概率不变,则称 X \boldsymbol X X为时间齐次Markov链,这是我们主要讨论的Markov链。

  • 对于时间齐次Markov链,令
    P = ( p 11 p 12 ⋯ p 1 N p 21 p 22 ⋯ p 2 N ⋮ ⋮ ⋮ p N 1 p N 2 ⋯ p N N ) \boldsymbol P=\left( \begin{matrix} p_{11}&p_{12}&\cdots&p_{1N}\\ p_{21}&p_{22}&\cdots&p_{2N}\\ \vdots&\vdots&&\vdots\\ p_{N1}&p_{N2}&\cdots&p_{NN} \end{matrix} \right) P=p11p21pN1p12p22pN2p1Np2NpNN
    为Markov链的状态转移矩阵,这里有 ∑ j = 1 N p i j = 1 \sum_{j=1}^N p_{ij}=1 j=1Npij=1

  • Markov链的分布规律完全由初始分布 p 0 \boldsymbol p_0 p0与状态转移矩阵 P \boldsymbol P P确定。

描述Markov链,可以用状态转移矩阵 P \boldsymbol P P和有向图 ( V , G ) (V,G) (V,G),这里 V V V表示顶点集, G G G表示边集。

2.Markov链的分布

Markov链的初始分布指的是 p 0 = ( p 0 ( 1 ) , ⋯   , p 0 ( N ) ) \boldsymbol p_0=(p_0(1),\cdots,p_0(N)) p0=(p0(1),,p0(N)),这里 p 0 ( i ) = P ( X 0 = i ) p_0(i)=P(X_0=i) p0(i)=P(X0=i)。初始分布用来描述 X \boldsymbol X X的初始状态分布规律,通常是可选择、可控制的。同理, X k X_k Xk的分布记作 p k = ( p k ( 1 ) , ⋯   , p k ( N ) ) \boldsymbol p_k=(p_k(1),\cdots,p_k(N)) pk=(pk(1),,pk(N))

对于Markov链的一维分布,有
p 1 ( j ) = ∑ i = 1 N p 0 ( i ) p i j p 1 = ( p 1 ( 1 ) , ⋯   , p 1 ( N ) ) = ( ∑ i = 1 N p 0 ( i ) p i 1 , ⋯   , ∑ i = 1 N p 0 ( i ) p i N ) = ( p 0 ( 1 ) , ⋯   , p 0 ( N ) ) ⋅ ( p 11 p 12 ⋯ p 1 N p 21 p 22 ⋯ p 2 N ⋮ ⋮ ⋮ p N 1 p N 2 ⋯ p N N ) = p 0 P p n = p 0 P n \begin{aligned} p_1(j)=&\sum_{i=1}^N p_0(i)p_{ij}\\ \\ \boldsymbol p_1=&(p_1(1),\cdots,p_1(N))\\ =&\left( \sum_{i=1}^N p_0(i)p_{i1}, \cdots, \sum_{i=1}^N p_0(i)p_{iN} \right)\\ =&(p_0(1), \cdots,p_0(N))\cdot\left( \begin{matrix} p_{11}&p_{12}&\cdots&p_{1N}\\ p_{21}&p_{22}&\cdots&p_{2N}\\ \vdots&\vdots&&\vdots\\ p_{N1}&p_{N2}&\cdots&p_{NN} \end{matrix} \right)\\ =&\boldsymbol p_0\boldsymbol P\\ \\ \boldsymbol p_{n}=&\boldsymbol p_0 \boldsymbol P^n \end{aligned} p1(j)=p1====pn=i=1Np0(i)pij(p1(1),,p1(N))(i=1Np0(i)pi1,,i=1Np0(i)piN)(p0(1),,p0(N))p11p21pN1p12p22pN2p1Np2NpNNp0Pp0Pn
由此得到 n n n步转移矩阵为 P ( n ) = P n \boldsymbol P^{(n)}=\boldsymbol P^n P(n)=Pn,刚好是一步转移矩阵的 n n n次方。记 n n n步转移概率为 p i j ( n ) p^{(n)}_{ij} pij(n),它表示初始状态为 i i i时经过 n n n步到达状态 j j j的概率(一般约定 p i j ( n ) = 1 p_{ij}^{(n)}=1 pij(n)=1当且仅当 i = j i=j i=j,否则 p i j ( n ) = 0 p_{ij}^{(n)}=0 pij(n)=0), P ( n ) = ( p i j ( n ) ) n × n \boldsymbol P^{(n)}=(p^{(n)}_{ij})_{n\times n} P(n)=(pij(n))n×n

以此可以推断 P ( m + n ) = P m + n = P m P n = P ( m ) P ( n ) \boldsymbol P^{(m+n)}=\boldsymbol P^{m+n}=\boldsymbol P^m\boldsymbol P^n=\boldsymbol P^{(m)}\boldsymbol P^{(n)} P(m+n)=Pm+n=PmPn=P(m)P(n),也就是
p i j ( m + n ) = ∑ k = 1 N p i k ( m ) p k j ( n ) p_{ij}^{(m+n)}=\sum_{k=1}^N p_{ik}^{(m)}p_{kj}^{(n)} pij(m+n)=k=1Npik(m)pkj(n)
这被称为Chapman-Kolmogorov方程。

任意有限维分布,则有
P ( X 0 = i 0 , X 1 = i 1 , ⋯   , X n = i n ) = P ( X 0 = i 0 ) P ( X 1 = i 1 ∣ X 0 = i 0 ) ⋯ P ( X n = i n ∣ X n − 1 = i n − 1 , ⋯   , X 0 = i 0 ) = p 0 ( i 0 ) p i 0 i 1 p i 1 i 2 ⋯ p i n − 1 i n \begin{aligned} &P(X_0=i_0,X_1=i_1,\cdots,X_n=i_n)\\ =&P(X_0=i_0)P(X_1=i_1|X_0=i_0)\cdots P(X_n=i_n|X_{n-1}=i_{n-1},\cdots,X_0=i_0)\\ =&p_0(i_0)p_{i_0i_1}p_{i_1i_2}\cdots p_{i_{n-1}i_n} \end{aligned} ==P(X0=i0,X1=i1,,Xn=in)P(X0=i0)P(X1=i1X0=i0)P(Xn=inXn1=in1,,X0=i0)p0(i0)pi0i1pi1i2pin1in

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值