【时间序列分析】18.时间序列的递推预测

十八、时间序列的递推预测

1.零均值序列的递推预测

所谓递推预测,其实就是预测这样的问题: L ( Y n + 1 ∣ Y n ) L(Y_{n+1}|\boldsymbol Y_n) L(Yn+1Yn),这里 Y n = s p ‾ ( Y n , ⋯   , Y 1 ) \boldsymbol Y_n=\overline{\rm sp}(Y_n,\cdots,Y_1) Yn=sp(Yn,,Y1),也就是用有限多项历史信息预测未来的信息。现在讨论零均值时间序列 { Y n } \{Y_n\} {Yn}的递推预测,这里并不要求 Y n Y_n Yn是平稳序列

由于是递推预测,所以预测是一项一项进行的。对 Y 1 Y_1 Y1的预测由于没有任何历史信息,所以 Y ^ 1 = 0 \hat Y_1=0 Y^1=0,而获得了 Y 1 Y_1 Y1的实际观测值后,就可以计算预测误差 W 1 = Y 1 − Y ^ 2 W_1=Y_1-\hat Y_2 W1=Y1Y^2;接下来对 Y 2 Y_2 Y2的预测就是 Y ^ 2 = L ( Y 2 ∣ Y 1 ) \hat Y_2=L(Y_2|\boldsymbol Y_1) Y^2=L(Y2Y1),得到 Y 2 Y_2 Y2的观测值后,又可以计算预测误差 W 2 = Y 2 − Y ^ 2 W_2=Y_2-\hat Y_2 W2=Y2Y^2……由此,在进行我们需要的递推预测 Y ^ n + 1 = L ( Y n + 1 ∣ Y n ) \hat Y_{n+1}=L(Y_{n+1}|\boldsymbol Y_n) Y^n+1=L(Yn+1Yn)之前,我们已经可以获得以下的信息列:

  • 预测序列 { Y ^ n } \{\hat Y_n\} {Y^n} Y ^ 1 = 0 \hat Y_1=0 Y^1=0,对 k ≥ 1 k\ge 1 k1 Y ^ k + 1 = L ( Y k + 1 ∣ Y k ) \hat Y_{k+1}=L(Y_{k+1}|\boldsymbol Y_k) Y^k+1=L(Yk+1Yk)
  • 预测误差序列 { W n } \{W_n\} {Wn} W k = Y k − Y ^ k W_k=Y_k-\hat Y_k Wk=YkY^k,代表每一次预测的误差观测值。
  • 预测误差方差 { ν n } \{\nu_n\} {νn} ν k = E ( W k + 1 2 ) \nu_{k}={\rm E}(W_{k+1}^2) νk=E(Wk+12),代表每一次预测的均方误差(期望值)。注意这里计算 ν k \nu_k νk时我们还没有获得 Y k + 1 Y_{k+1} Yk+1的观测值。

注意到 W k ⊥ Y k − 1 W_k\perp \boldsymbol Y_{k-1} WkYk1 W k ∈ Y k W_k\in \boldsymbol Y_k WkYk,所以 { W k } \{W_k\} {Wk}是一个正交序列,有 E ( W n W k ) = ν n − 1 δ n − k {\rm E}(W_nW_k)=\nu_{n-1}\delta_{n-k} E(WnWk)=νn1δnk

由于 Y n \boldsymbol Y_n Yn不是相互正交的,我们希望能够找到一个与 Y n \boldsymbol Y_n Yn等价的,但是互相正交的序列进行预测。事实上,预测误差序列就是这样的一个序列。记 W n = s p ‾ ( W 1 , ⋯   , W n ) \boldsymbol W_n=\overline{\rm sp}(W_1,\cdots,W_n) Wn=sp(W1,,Wn),我们现在要证明它与 Y n \boldsymbol Y_n Yn的等价性,也就是 ∀ n , Y n ∈ W n \forall n,Y_n\in\boldsymbol W_n n,YnWn

使用数学归纳法,首先 Y 1 = W 1 ∈ M 1 Y_1=W_1\in M_1 Y1=W1M1是显然的,如果对 k ≤ n k\le n kn都有 Y k ∈ W k Y_k\in \boldsymbol W_k YkWk,则对 k = n + 1 k=n+1 k=n+1,有
Y n + 1 = Y ^ n + 1 + W n + 1 , Y_{n+1}=\hat Y_{n+1}+W_{n+1}, Yn+1=Y^n+1+Wn+1,
Y ^ n + 1 ∈ Y n \hat Y_{n+1}\in \boldsymbol Y_n Y^n+1Yn,也就是 Y ^ n + 1 ∈ W n \hat Y_{n+1}\in \boldsymbol W_n Y^n+1Wn,且 W n + 1 ∈ W n + 1 W_{n+1}\in \boldsymbol W_{n+1} Wn+1Wn+1,所以 Y n + 1 ∈ W n + 1 Y_{n+1}\in \boldsymbol W_{n+1} Yn+1Wn+1就证得了,也就意味着我们证明了
Y n = W n , ∀ n , \boldsymbol Y_n=\boldsymbol W_n,\forall n, Yn=Wn,n,
因此我们用 W 1 , ⋯   , W n W_1,\cdots,W_n W1,,Wn预测 Y n + 1 Y_{n+1} Yn+1是合理的,即 Y ^ n + 1 = L ( Y n + 1 ∣ Y n ) = L ( Y n + 1 ∣ W n ) \hat Y_{n+1}=L(Y_{n+1}|\boldsymbol Y_n)=L(Y_{n+1}|\boldsymbol W_n) Y^n+1=L(Yn+1Yn)=L(Yn+1Wn)

基于用预测误差预测未来的事实,引出如下的递推预测定理。

零均值序列的递推预测:设 { Y t } \{Y_t\} {Yt}是零均值时间序列,如果 ( Y 1 , ⋯   , Y m + 1 ) ′ (Y_1,\cdots,Y_{m+1})' (Y1,,Ym+1)的协方差矩阵是正定的,则最佳线性预测可以如下表示:
Y ^ n + 1 = L ( Y n + 1 ∣ Y n ) = ∑ j = 0 n − 1 θ n , n − j W j + 1 . \hat Y_{n+1}=L(Y_{n+1}|\boldsymbol Y_n)=\sum_{j=0}^{n-1}\theta_{n,n-j}W_{j+1}. Y^n+1=L(Yn+1Yn)=j=0n1θn,njWj+1.
现在给出预测系数、预测均方误差的递推式,定义 ∑ j = 0 − 1 ( ⋅ ) = 0 \sum_{j=0}^{-1}(\cdot)=0 j=01()=0,则
{ ν 0 = E Y 1 2 , θ n , n − k = E ( Y n + 1 Y k + 1 ) − ∑ j = 0 k − 1 θ k , k − j θ n , n − j ν j ν k , 0 ≤ k ≤ n − 1 , ν n = E ( Y n + 1 2 ) − ∑ j = 0 n − 1 θ n , n − j 2 ν j . \left\{\begin{array}l \nu_0={\rm E}Y_1^2, \\ \theta_{n,n-k}=\dfrac{{\rm E}(Y_{n+1}Y_{k+1})-\sum\limits_{j=0}^{k-1}\theta_{k,k-j}\theta_{n,n-j}\nu_j}{\nu_k},&0\le k\le n-1,\\ \nu_n={\rm E}(Y_{n+1}^2)-\sum\limits_{j=0}^{n-1}\theta_{n,n-j}^2\nu_j. \end{array} \right. ν0=EY12,θn,nk=νkE(Yn+1Yk+1)j=0k1θk,kjθn,njνj,νn=E(Yn+12)j=0n1θn,nj2νj.0kn1,
如果 { Y t } \{Y_t\} {Yt}是平稳的,则 E ( Y n + 1 Y k + 1 ) = γ n − k , E ( Y t 2 ) = γ 0 {\rm E}(Y_{n+1}Y_{k+1})=\gamma_{n-k},{\rm E}(Y_t^2)=\gamma_0 E(Yn+1Yk+1)=γnk,E(Yt2)=γ0

下设 0 ≤ k ≤ n − 1 0\le k\le n-1 0kn1。要证明预测定理,只要对 Y ^ n + 1 = ∑ j = 1 n θ n , j W n + 1 − j \hat Y_{n+1}=\sum_{j=1}^n\theta_{n,j}W_{n+1-j} Y^n+1=j=1nθn,jWn+1j的两边同时乘上 W k + 1 W_{k+1} Wk+1并求数学期望,就得到
E ( Y ^ n + 1 W k + 1 ) = θ n , n − k ν k , {\rm E}(\hat Y_{n+1}W_{k+1})=\theta_{n,n-k}\nu_k, E(Y^n+1Wk+1)=θn,nkνk,
而因为 W n + 1 = Y n + 1 − Y ^ n + 1 W_{n+1}=Y_{n+1}-\hat Y_{n+1} Wn+1=Yn+1Y^n+1 W k + 1 W_{k+1} Wk+1正交, E ( Y ^ n + 1 W k + 1 ) = E ( Y n + 1 W k + 1 ) {\rm E}(\hat Y_{n+1}W_{k+1})={\rm E}(Y_{n+1}W_{k+1}) E(Y^n+1Wk+1)=E(Yn+1Wk+1),所以
θ n , n − k = E ( Y n + 1 W k + 1 ) ν k = E ( Y n + 1 ( Y k + 1 − ∑ j = 0 k − 1 θ k , k − j W j + 1 ) ) ν k , \theta_{n,n-k}=\frac{{\rm E}(Y_{n+1}W_{k+1})}{\nu_k}=\frac{{\rm E}(Y_{n+1}(Y_{k+1}-\sum_{j=0}^{k-1}\theta_{k,k-j}W_{j+1}))}{\nu_k}, θn,nk=νkE(Yn+1Wk+1)=νkE(Yn+1(Yk+1j=0k1θk,kjWj+1)),
展开括号就得到结论,而 ν j \nu_j νj很容易由勾股定理计算。总结一下,递推预测的系数应该如此计算:
ν 0 , Y ^ 1 = 0 , W 1 = Y 1 ; θ 1 , 1 ν 1 , Y ^ 2 = θ 1 , 1 W 1 , W 2 = Y 2 − Y ^ 2 ; θ 2 , 2 θ 2 , 1 ν 2 , Y ^ 3 = θ 2 , 2 W 1 + θ 2 , 1 W 2 , W 3 = Y 3 − Y ^ 3 ; θ 3 , 3 θ 3 , 2 θ 3 , 3 ν 3 , Y ^ 4 = θ 3 , 3 W 1 + θ 3 , 2 W 2 + θ 3 , 1 W 3 , W 4 = Y 4 − Y ^ 4 ; ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ \begin{matrix} \nu_0, &&&& \hat Y_1=0,&W_1=Y_1; \\ \theta_{1,1} & \nu_1, &&& \hat Y_2=\theta_{1,1}W_1,& W_2=Y_2-\hat Y_2; \\ \theta_{2,2} & \theta_{2,1} & \nu_2, && \hat Y_3=\theta_{2,2}W_1+\theta_{2,1}W_2, & W_3=Y_3-\hat Y_3;\\ \theta_{3,3} & \theta_{3,2} & \theta_{3,3} & \nu_3,&\hat Y_4=\theta_{3,3}W_1+\theta_{3,2}W_2+\theta_{3,1}W_3,&W_4=Y_4-\hat Y_4; \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \end{matrix} ν0,θ1,1θ2,2θ3,3ν1,θ2,1θ3,2ν2,θ3,3ν3,Y^1=0,Y^2=θ1,1W1,Y^3=θ2,2W1+θ2,1W2,Y^4=θ3,3W1+θ3,2W2+θ3,1W3,W1=Y1;W2=Y2Y^2;W3=Y3Y^3;W4=Y4Y^4;

2.平稳序列与 A R ( p ) {\rm AR}(p) AR(p)模型的递推预测

对于平稳序列,以上结论更加实用,因为可以将公式里的许多部分替换成自协方差函数。

零均值平稳列的递推预测:设 { X t } \{X_t\} {Xt}是零均值平稳序列, Γ n = ( γ ∣ i − j ∣ ) n × n \Gamma_n=(\gamma_{|i-j|})_{n\times n} Γn=(γij)n×n是其 n n n阶自协方差矩阵,预测误差是 Z t = X t − L ( X t ∣ X t − 1 ) Z_t=X_t-L(X_t|\boldsymbol X_{t-1}) Zt=XtL(XtXt1),则
X ^ n + 1 = ∑ j = 0 n − 1 θ n , n − j Z j + 1 . \hat X_{n+1}=\sum_{j=0}^{n-1}\theta_{n,n-j}Z_{j+1}. X^n+1=j=0n1θn,njZj+1.
满足如下的递推公式:定义 ∑ j = 0 − 1 ( ⋅ ) = 0 \sum_{j=0}^{-1}(\cdot)=0 j=01()=0,则
{ ν 0 = γ 0 , θ n , n − k = γ n − k − ∑ j = 0 k − 1 θ k , k − j θ n , n − j ν j ν k , 0 ≤ k ≤ n − 1 , ν n = γ 0 − ∑ j = 0 n − 1 θ n , n − j 2 ν j . \left\{\begin{array}l \nu_0=\gamma_0, \\ \theta_{n,n-k}=\dfrac{\gamma_{n-k}-\sum\limits_{j=0}^{k-1}\theta_{k,k-j}\theta_{n,n-j}\nu_j}{\nu_k},&0\le k\le n-1,\\ \nu_n=\gamma_0-\sum\limits_{j=0}^{n-1}\theta_{n,n-j}^2\nu_j. \end{array} \right. ν0=γ0,θn,nk=νkγnkj=0k1θk,kjθn,njνj,νn=γ0j=0n1θn,nj2νj.0kn1,
递推顺序与非平稳零均值序列一样。

此时,称预测误差 Z n Z_n Zn为样本新息。

典型的平稳序列有 A R ( p ) , M A ( q ) {\rm AR}(p),{\rm MA}(q) AR(p),MA(q) A R M A ( p , q ) {\rm ARMA}(p,q) ARMA(p,q)序列,我们将分别讨论其递推预测,先从 A R ( p ) {\rm AR}(p) AR(p)序列开始。设 { X t } \{X_t\} {Xt}满足 A R ( p ) {\rm AR}(p) AR(p)模型:
A ( B ) X t = ε t , X t = ∑ j = 1 p a j X t − j + ε t . A(\mathscr B)X_t=\varepsilon_t,\quad X_t=\sum_{j=1}^pa_jX_{t-j}+\varepsilon_t. A(B)Xt=εt,Xt=j=1pajXtj+εt.
满足特征多项式 A ( z ) = 1 − ∑ j = 1 p a j z j ≠ 0 , ∣ z ∣ ≤ 1 A(z)=1-\sum_{j=1}^pa_jz^j\ne 0,|z|\le 1 A(z)=1j=1pajzj=0,z1。事实上,由于 ε t \varepsilon_t εt与历史信息无关,所以直觉上,应该会有 X t X_t Xt只需要用其前 p p p项预测即可,也就是
L ( X n + 1 ∣ X n ) = L ( X n + 1 ∣ X n , X n − 1 , ⋯   , X n − p + 1 ) . L(X_{n+1}|\boldsymbol X_n)=L(X_{n+1}|X_n,X_{n-1},\cdots,X_{n-p+1}). L(Xn+1Xn)=L(Xn+1Xn,Xn1,,Xnp+1).
事实上也确实如此,因为
L ( X n + 1 ∣ X n ) = L ( ∑ j = 1 p a j X n − j + ε t ∣ X n ) = ∑ j = 1 p a j X n − j . L(X_{n+1}|\boldsymbol X_n)=L\left(\sum_{j=1}^pa_jX_{n-j}+\varepsilon_t\bigg|\boldsymbol X_n \right)=\sum_{j=1}^pa_jX_{n-j}. L(Xn+1Xn)=L(j=1pajXnj+εtXn)=j=1pajXnj.
由数学归纳法可以得到 L ( X n + k ∣ X n ) = L ( X n + k ∣ X n , X n − 1 , ⋯   , X n − p + 1 ) L(X_{n+k}|\boldsymbol X_n)=L(X_{n+k}|X_n,X_{n-1},\cdots,X_{n-p+1}) L(Xn+kXn)=L(Xn+kXn,Xn1,,Xnp+1),也就是说 A R ( p ) {\rm AR}(p) AR(p)模型的预测总只需要前 p p p项即可。那么,前 p p p项应该如何预测呢?这就可以用到平稳序列的递推公式了,我们假设白噪声方差为 σ 2 \sigma^2 σ2
X ^ 1 = 0 , ν 0 = γ 0 , Z 1 = X 1 . \hat X_1=0,\quad \nu_0=\gamma_0,\quad Z_1=X_1. X^1=0,ν0=γ0,Z1=X1.
接下来计算 θ 1 , 1 \theta_{1,1} θ1,1,有
θ 1 , 1 = γ 1 ν 0 = γ 1 γ 0 , X ^ 2 = γ 1 γ 0 X 1 , Z 2 = X 2 − γ 1 γ 0 X 1 , \theta_{1,1}=\frac{\gamma_1}{\nu_0}=\frac{\gamma_1}{\gamma_0},\quad \hat X_2=\frac{\gamma_1}{\gamma_0}X_1,\quad Z_2=X_2-\frac{\gamma_1}{\gamma_0}X_1, θ1,1=ν0γ1=γ0γ1,X^2=γ0γ1X1,Z2=X2γ0γ1X1,
再计算 θ 2 , 2 \theta_{2,2} θ2,2 θ 2 , 1 \theta_{2,1} θ2,1,有
θ 2 , 2 = γ 2 γ 0 , θ 2 , 1 = γ 1 − θ 1 , 1 θ 2 , 2 ν 0 ν 1 , X ^ 3 = θ 2 , 2 X 1 + θ 2 , 1 ( X 2 − γ 1 γ 0 X 1 ) . \theta_{2,2}=\frac{\gamma_2}{\gamma_0},\theta_{2,1}=\frac{\gamma_1-\theta_{1,1}\theta_{2,2}\nu_0}{\nu_1},\quad \hat X_3=\theta_{2,2}X_1+\theta_{2,1}(X_{2}-\frac{\gamma_1}{\gamma_0}X_1). θ2,2=γ0γ2,θ2,1=ν1γ1θ1,1θ2,2ν0,X^3=θ2,2X1+θ2,1(X2γ0γ1X1).
以此类推计算。

3. M A ( q ) {\rm MA}(q) MA(q) A R M A ( p , q ) {\rm ARMA}(p,q) ARMA(p,q)序列的递推预测

M A ( q ) {\rm MA}(q) MA(q)序列是有限滑动和,序列满足 X t = B ( B ) ε t X_t=B(\mathscr B)\varepsilon_t Xt=B(B)εt,且自协方差函数 q q q后截尾,因此
L ( X n + 1 ∣ X n ) = L ( X n + 1 ∣ X n , X n − 1 , ⋯   , X n − q + 1 ) , n ≥ q . L(X_{n+1}|\boldsymbol X_n)=L(X_{n+1}|X_n,X_{n-1},\cdots,X_{n-q+1}),\quad n\ge q. L(Xn+1Xn)=L(Xn+1Xn,Xn1,,Xnq+1),nq.
现在讨论 n ≥ q n\ge q nq时的预测,并假设 ε ^ n = X n − X ^ n \hat \varepsilon_n=X_n-\hat X_n ε^n=XnX^n为逐步预测误差序列。有
L ( X n + 1 ∣ X n ) = L ( X n + 1 ∣ X n , X n − 1 , ⋯   , X n − q + 1 ) = L ( X n + 1 ∣ ε ^ n , ⋯   , ε ^ n − q + 1 ) . L(X_{n+1}|\boldsymbol X_n)=L(X_{n+1}|X_n,X_{n-1},\cdots,X_{n-q+1})=L(X_{n+1}|\hat\varepsilon_n,\cdots,\hat\varepsilon_{n-q+1}). L(Xn+1Xn)=L(Xn+1Xn,Xn1,,Xnq+1)=L(Xn+1ε^n,,ε^nq+1).
这是因为 X n \boldsymbol X_n Xn的张成空间与 { ε ^ n } \{\hat\varepsilon_n\} {ε^n}张成空间在任何 n n n都相同,所以每次增加的 X n + 1 X_{n+1} Xn+1 ε ^ n + 1 \hat\varepsilon_{n+1} ε^n+1都位于同一纬度。接下来,按照递推公式计算系数 θ n , 1 , ⋯   , θ n , q \theta_{n,1},\cdots,\theta_{n,q} θn,1,,θn,q即可。

A R M A ( p , q ) {\rm ARMA}(p,q) ARMA(p,q)序列则复杂一写,它不像 A R ( p ) {\rm AR}(p) AR(p)序列一样可由前有限项决定,也不像 M A ( q ) {\rm MA}(q) MA(q)序列一样 q q q后截尾,假设模型是 A ( B ) X t = B ( B ) ε t A(\mathscr B)X_t=B(\mathscr B)\varepsilon_t A(B)Xt=B(B)εt,考虑一个这样的变换
m = d e f max ⁡ ( p , q ) , Y t = { X t / σ , t = 1 , 2 , ⋯   , m ; A ( B ) X t / σ , t > m . m\xlongequal{def}\max(p,q), \quad Y_t=\left\{\begin{array}l X_t/\sigma,&t=1,2,\cdots,m;\\ A(\mathscr B)X_t/\sigma,&t>m. \end{array}\right. mdef max(p,q),Yt={Xt/σ,A(B)Xt/σ,t=1,2,,m;t>m.
这样定义的 Y t Y_t Yt与白噪声方差 σ 2 \sigma^2 σ2无关,且当 t > m t>m t>m时,有
σ Y t = B ( B ) ε t , ⇒ Y t = B ( B ) ε ~ t , t > m . \sigma Y_t=B(\mathscr B)\varepsilon_t,\Rightarrow Y_t=B(\mathscr B)\tilde \varepsilon_t,\quad t>m. σYt=B(B)εt,Yt=B(B)ε~t,t>m.
也就是当 Y t > m Y_t>m Yt>m的部分是一个 M A ( q ) {\rm MA}(q) MA(q)模型,从而是 q q q后截尾的。设 W t W_t Wt Y t Y_t Yt的预测误差,这样定义 Y t Y_t Yt的好处有以下几点。

首先, Y t , X t Y_t,X_t Yt,Xt的张成空间一样,即 Y t = X t \boldsymbol Y_t=\boldsymbol X_t Yt=Xt,从 Y t Y_t Yt的定义,当 t ≤ m t\le m tm时可以直接看出,当 t > m t>m t>m时也显然有 Y t ∈ X t Y_t\in\boldsymbol X_t YtXt,并且可以用数学归纳法证明 X t ∈ Y t X_t\in\boldsymbol Y_t XtYt,从而 X t = Y t \boldsymbol X_t=\boldsymbol Y_t Xt=Yt。如果设 W t \boldsymbol W_t Wt W 1 , ⋯   , W t W_1,\cdots,W_t W1,,Wt的张成空间,则又有 Y t = W t \boldsymbol Y_t=\boldsymbol W_t Yt=Wt,从而有
X t = Y t = W t . \boldsymbol X_t=\boldsymbol Y_t=\boldsymbol W_t. Xt=Yt=Wt.
其次,由于 Y t Y_t Yt X t X_t Xt的联系,也可以用 X t X_t Xt的自协方差函数 γ k \gamma_k γk表示 Y t Y_t Yt的协方差(但要注意 Y t Y_t Yt在跨越 m m m时不平稳从而不是平稳过程)。当 s ≤ t ≤ m s\le t\le m stm Y t Y_t Yt X t X_t Xt一样都是 A R M A ( p , q ) {\rm ARMA}(p,q) ARMA(p,q)模型,当 t ≥ s > m t\ge s>m ts>m Y t Y_t Yt M A ( q ) {\rm MA}(q) MA(q)模型,它们的自协方差函数都容易表达,所以只要考虑 s ≤ m < t s\le m<t sm<t的情况即可。有
E ( Y s Y t ) = { σ − 2 γ t − s , 1 ≤ s ≤ t ≤ m ; σ − 2 [ γ t − s − ∑ j = 1 p a j γ t − s − j ] , 1 ≤ s ≤ m < t ; ∑ j = 0 q b j b j + t − s , t ≥ s > m . b 0 = 1 , b j = 0 ( j > q ) . {\rm E}(Y_sY_t)=\left\{\begin{array}l \sigma^{-2}\gamma_{t-s},&1\le s\le t\le m;\\ \sigma^{-2}[\gamma_{t-s}-\sum_{j=1}^pa_j\gamma_{t-s-j}],& 1\le s\le m <t;\\ \sum_{j=0}^qb_jb_{j+t-s},&t\ge s>m. \end{array}\right.\\ b_0=1,\quad b_j=0(j>q). E(YsYt)=σ2γts,σ2[γtsj=1pajγtsj],j=0qbjbj+ts,1stm;1sm<t;ts>m.b0=1,bj=0(j>q).
最后, Y t Y_t Yt的预测误差 W t W_t Wt X t X_t Xt的预测误差 Z t Z_t Zt之间也存在联系。当 1 ≤ t ≤ m 1\le t\le m 1tm时,
W t = Y t − Y ^ t = X t σ − 1 σ L ( X t ∣ X t − 1 ) = 1 σ Z t , W_t=Y_t-\hat Y_t=\frac{X_t}{\sigma}-\frac1{\sigma}L(X_t|\boldsymbol X_{t-1})=\frac1{\sigma}Z_t,\\ Wt=YtY^t=σXtσ1L(XtXt1)=σ1Zt,
t > m t>m t>m时,
W t = 1 σ [ A ( B ) X t − L ( A ( B ) X t ∣ X t ) ] = 1 σ [ X t − L ( X t ∣ X t − 1 ) ] = 1 σ Z t . W_t=\frac{1}{\sigma}[A(\mathscr B)X_t-L(A(\mathscr B)X_t|\boldsymbol X_t) ]=\frac1{\sigma}[X_t-L(X_t|\boldsymbol X_{t-1})]=\frac1\sigma Z_t. Wt=σ1[A(B)XtL(A(B)XtXt)]=σ1[XtL(XtXt1)]=σ1Zt.
也就是说,不论 t t t取什么值, W t W_t Wt Z t Z_t Zt之间总只相差一个常数倍,所以它们的均方误差之间也只差 σ 2 \sigma^2 σ2倍。

接下来就从形式相对简单的 Y t Y_t Yt入手,推广到 X t X_t Xt的预测。对于 1 ≤ n ≤ m 1\le n\le m 1nm,有
Y ^ n + 1 = ∑ j = 0 n − 1 θ n , n − j W j + 1 , X ^ n + 1 = σ Y ^ n + 1 = σ ∑ j = 0 n − 1 θ n , n − j W j + 1 = ∑ j = 0 n − 1 θ n , n − j Z j + 1 . \hat Y_{n+1}=\sum_{j=0}^{n-1}\theta_{n,n-j}W_{j+1},\\ \hat X_{n+1}=\sigma \hat Y_{n+1}=\sigma\sum_{j=0}^{n-1}\theta_{n,n-j}W_{j+1}=\sum_{j=0}^{n-1}\theta_{n,n-j}Z_{j+1}. Y^n+1=j=0n1θn,njWj+1,X^n+1=σY^n+1=σj=0n1θn,njWj+1=j=0n1θn,njZj+1.
对于 n > m n>m n>m,此时 Y n + 1 = σ − 1 B ( B ) ε n + 1 Y_{n+1}=\sigma^{-1}B(\mathscr B)\varepsilon_{n+1} Yn+1=σ1B(B)εn+1,是一个 M A ( q ) {\rm MA}(q) MA(q)序列,所以结合前面对白噪声序列的讨论,
L ( Y n + 1 ∣ Y n ) = ∑ j = 1 q θ n , j W n + 1 − j . L(Y_{n+1}|\boldsymbol Y_n)=\sum_{j=1}^q\theta_{n,j}W_{n+1-j}. L(Yn+1Yn)=j=1qθn,jWn+1j.
又因为 σ Y t = A ( B ) X t \sigma Y_t=A(\mathscr B)X_t σYt=A(B)Xt,所以
X n + 1 = σ Y n + 1 + ∑ j = 1 p a j X n + 1 − j , X ^ n + 1 = ∑ j = 1 q θ n , j Z n + 1 − j + ∑ j = 1 p a j X n + 1 − j . X_{n+1}=\sigma Y_{n+1}+\sum_{j=1}^pa_jX_{n+1-j},\\ \hat X_{n+1}=\sum_{j=1}^q\theta_{n,j}Z_{n+1-j}+\sum_{j=1}^pa_jX_{n+1-j}. Xn+1=σYn+1+j=1pajXn+1j,X^n+1=j=1qθn,jZn+1j+j=1pajXn+1j.
可以看出,在 n > m n>m n>m时,对 X n + 1 X_{n+1} Xn+1的最佳线性预测,既有 A R ( p ) {\rm AR}(p) AR(p)序列的有限项因素,也有 M A ( q ) {\rm MA}(q) MA(q)序列预测的 q q q后截尾性。

回顾总结

  1. 对于零均值序列的递推预测,因为 Y n = W n \boldsymbol Y_n=\boldsymbol W_n Yn=Wn,一般会选择用预测误差序列进行线性预测,这是因为预测误差序列具有正交性。

  2. 具体到平稳序列 { X t } \{X_t\} {Xt}情形,如果预测误差为 Z t Z_t Zt,自协方差函数为 γ k \gamma_k γk,则递推公式为
    X ^ n + 1 = ∑ j = 0 n − 1 θ n , n − j W j + 1 . ν 0 = γ 0 , θ n , n − k = γ n − k − ∑ j = 0 n − 1 θ k , k − j θ n , n − j ν j ν k ν n = γ 0 − ∑ j = 0 n − 1 θ n , n − j 2 ν j . \hat X_{n+1}=\sum_{j=0}^{n-1}\theta_{n,n-j}W_{j+1}.\\ \nu_0=\gamma_0,\\ \theta_{n,n-k}=\frac{\gamma_{n-k}-\sum_{j=0}^{n-1}\theta_{k,k-j}\theta_{n,n-j}\nu_j}{\nu_{k}}\\ \nu_n=\gamma_0-\sum_{j=0}^{n-1}\theta_{n,n-j}^2\nu_j. X^n+1=j=0n1θn,njWj+1.ν0=γ0,θn,nk=νkγnkj=0n1θk,kjθn,njνjνn=γ0j=0n1θn,nj2νj.

  3. A R ( p ) {\rm AR}(p) AR(p)序列的预测,只需要用前 p p p个历史信息即可; M A ( q ) {\rm MA}(q) MA(q)序列的预测,只需要用前 q q q个预测误差即可。

  4. A R M A ( p , q ) {\rm ARMA}(p,q) ARMA(p,q)序列的预测,可以构造一个辅助序列,使其具有更简单的形式。具体地,有
    X ^ n + 1 = { ∑ j = 0 n − 1 θ n , n − j Z j + 1 , n ≤ m ; ∑ j = 1 q θ n , 1 Z n − q + j + ∑ j = 1 p a j X n + 1 − j , n > m . \hat X_{n+1}= \left\{\begin{array}l \sum\limits_{j=0}^{n-1}\theta_{n,n-j}Z_{j+1},& n\le m; \\ \sum\limits_{j=1}^q\theta_{n,1}Z_{n-q+j}+\sum\limits_{j=1}^pa_jX_{n+1-j},&n>m. \end{array}\right. X^n+1=j=0n1θn,njZj+1,j=1qθn,1Znq+j+j=1pajXn+1j,nm;n>m.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值