【时间序列分析】17. 时间序列的递推预测

时间序列的递推预测

时间序列的递推预测

有了之前的理论基础,我们开始讨论递推预测的问题,在这里我们假设自协方差函数已知。

{ Y t } \{Y_t\} { Yt} 是方差有限的零均值时间序列,对任何正整数 n n n ,用
L n = s p ‾ { Y 1 , Y 2 , ⋯   , Y n } L_n=\overline{\rm sp}\{Y_1,Y_2,\cdots,Y_n\} Ln=sp{ Y1,Y2,,Yn}
表示 Y 1 , Y 2 , ⋯   , Y n Y_1,Y_2,\cdots,Y_n Y1,Y2,,Yn 的线性组合全体,定义 Y n = ( Y 1 , Y 2 , ⋯   , Y n ) T \boldsymbol{Y}_n=(Y_1,Y_2,\cdots,Y_n)^{\rm T} Yn=(Y1,Y2,,Yn)T 。为方便讨论 { Y t } \{Y_t\} { Yt} 的递推预测问题
Y ^ n = L ( Y n ∣ Y n − 1 )   , \hat{Y}_n=L(Y_n|\boldsymbol{Y}_{n-1})\ , Y^n=L(YnYn1) ,

我们引入预测误差 W n W_n Wn 及其方差 ν n − 1 \nu_{n-1} νn1
W n = Y n − Y ^ n   ,   ν n − 1 = E ( W n 2 )   . W_n=Y_n-\hat{Y}_n \ , \\ \ \\ \nu_{n-1}={\rm E}(W_n^2)\ . Wn=YnY^n , νn1=E(Wn2) .
首先考虑第一项,由于没有任何历史信息,所以 Y 1 Y_1 Y1 的预测是无效的,即 Y ^ 1 = 0 \hat{Y}_1=0 Y^1=0 。此时预测误差为 W 1 = Y 1 − Y ^ 1 = Y 1 W_1=Y_1-\hat{Y}_1=Y_1 W1=Y1Y^1=Y1 ,预测误差的方差为 ν 0 = E W 1 2 = E Y 1 2 \nu_0={\rm E}W_1^2={\rm E}Y_1^2 ν0=EW12=EY12 。此时,我们定义了三个序列的递推式及其初始值,只要获得一定的历史信息便可以实现递推预测。

下面分析一下预测误差序列 { W n } \{W_n\} { Wn} 在 Hilbert 空间上的性质。根据最佳线性预测的性质, W n ⊥ Y n − 1 W_n\perp\boldsymbol{Y}_{n-1} WnYn1 ,即 W n W_n Wn L n − 1 L_{n-1} Ln1 中的任何一个随机变量正交,并且 W n ∈ L n W_n\in L_n WnLn ,于是 { W n } \{W_n\} { Wn} 是一个正交序列,满足
E ( W n W k ) = ν n − 1 δ n − k   . {\rm E}(W_nW_k)=\nu_{n-1}\delta_{n-k}\ . E(WnWk)=νn1δnk .
其中 δ t \delta_t δt 是 Kronecker 函数:
δ n − k = { 1   , n = k   ; 0   , n ≠ k   . \delta_{n-k}=\left\{ \begin{array}{lll} 1\ , & n=k\ ; \\ 0\ , & n\neq k \ . \end{array} \right. δnk={ 1 ,0 ,n=k ;n=k .
由于 { W n } \{W_n\} { Wn} 正交序列的性质,相比于 { Y n } \{Y_n\} { Yn} ,如果可以用来进行预测则有很多的方便。类似于在正交基上的投影,可以直接计算坐标。下面证明用 W n = ( W 1 , W 2 ⋯   , W n ) T \boldsymbol{W_n}=(W_1,W_2\cdots,W_n)^{\rm T} Wn=(W1,W2,Wn)T Y n + 1 Y_{n+1} Yn+1 进行预测和用 Y n = ( Y 1 , Y 2 , ⋯   , Y n ) T \boldsymbol{Y}_n=(Y_1,Y_2,\cdots,Y_n)^{\rm T} Yn=(Y1,Y2,,Yn)T Y n + 1 Y_{n+1} Yn+1 进行预测是等价的。

定义 M n M_n Mn 表示 W 1 , W 2 , ⋯   , W n W_1,W_2,\cdots,W_n W1,W2,,Wn 的全体线性组合:
M n ≜ s p ‾ { W 1 , W 2 , ⋯   , W n }   , M_n\triangleq\overline{\rm sp}\{W_1,W_2,\cdots,W_n\} \ , Mnsp{ W1,W2,,Wn} ,
利用之前的 W n ∈ L n W_n\in L_n WnLn 易知有 M n ⊂ L n M_n\sub L_n MnLn

利用数学归纳法证明 Y n ∈ M n Y_n\in M_n YnMn :

n = 1 n=1 n=1 时,有 Y 1 = W 1 ∈ M 1 Y_1=W_1\in M_1 Y1=W1M1

如果对 k ≤ n k\leq n kn 都有 Y n ∈ M n Y_n\in M_n YnMn ,则考虑当 k = n + 1 k=n+1 k=n+1 时的情况,

由于 Y ^ n + 1 = L ( Y n + 1 ∣ Y n ) ∈ M n \hat{Y}_{n+1}=L(Y_{n+1}|\boldsymbol{Y}_n)\in M_n Y^n+1=L(Yn+1Yn)Mn 于是
Y n + 1 = ( Y n + 1 − Y ^ n + 1 ) + Y ^ n + 1 = W n + 1 + Y ^ n + 1 ∈ M n + 1   , Y_{n+1}=(Y_{n+1}-\hat{Y}_{n+1})+\hat{Y}_{n+1}=W_{n+1}+\hat{Y}_{n+1}\in M_{n+1} \ , Yn+1=(Yn+1Y^n+1)+Y^n+1=Wn+1+Y^n+1Mn+1 ,
这就证明了对 ∀ n ∈ N \forall n\in\N nN Y n ∈ M n Y_n\in M_n YnMn 成立。

于是得到
L n = s p ‾ { Y 1 , Y 2 , ⋯   , Y n } = s p ‾ { W 1 , W 2 , ⋯   , W n } = M n L_n=\overline{\rm sp}\{Y_1,Y_2,\cdots,Y_n\}=\overline{\rm sp}\{W_1,W_2,\cdots,W_n\}=M_n Ln=sp{ Y1,Y2,,Yn}=sp{ W1,W2,,Wn}=Mn
因此利用预测误差序列 { W t } \{W_t\} { Wt} 代替原时间序列 { Y t } \{Y_t\} { Yt} 进行线性预测是等价的。

下面给出计算计算零均值时间序列的预测的一个重要的定理:递推预测定理

{ Y t } \{Y_t\} { Yt} 是零均值平稳序列,如果 ( Y 1 , Y 2 , ⋯   , Y m + 1 ) T (Y_1,Y_2,\cdots,Y_{m+1})^{\rm T} (Y1,Y2,,Ym+1)T 的协方差矩阵正定,则最佳线性预测可以用如下的公式表示:
Y ^ n + 1 ≜ L ( Y n + 1 ∣ Y n ) = ∑ j = 0 n − 1 θ n , n − j W j + 1   , \hat{Y}_{n+1}\triangleq L(Y_{n+1}|\boldsymbol{Y}_n)=\sum_{j=0}^{n-1}\theta_{n,n-j}W_{j+1} \ , Y^n+1L(Yn+1Yn)=j=0n1θn,njWj+1 ,
其中的系数 { θ n , j } \{\theta_{n,j}\} { θn,j} 和预测的均方误差 ν n = E W n + 1 2 \nu_n={\rm E}W_{n+1}^2 νn=EWn+12 满足如下的递推公式:
{ ν 0 = E Y 1 2   , θ n , n − k = E ( Y n + 1 Y k + 1 ) − ∑ j = 0 k − 1 θ k , k − j θ n , n − j ν j ν k   ,      0 ≤ k ≤ n − 1 ν n = E Y n + 1 2 − ∑ k = 0 n − 1 θ n , n − k 2 ν k   , \left\{ \begin{array}{l} \nu_0={\rm E}Y_1^2 \ , \\ \theta_{n,n-k}=\dfrac{ {\rm E}(Y_{n+1}Y_{k+1})-\displaystyle\sum_{j=0}^{k-1}\theta_{k,k-j}\theta_{n,n-j}\nu_j}{\nu_k} \ , \ \ \ \ 0\leq k\leq n-1 \\ \nu_n={\rm E}Y_{n+1}^2-\displaystyle\sum_{k=0}^{n-1}\theta_{n,n-k}^2\nu_k \ , \end{array} \right.

  • 4
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值