【时间序列分析】19.平稳序列递推预测实例

十九、平稳序列递推预测实例

1. A R ( 1 ) {\rm AR}(1) AR(1) A R ( 2 ) {\rm AR}(2) AR(2)序列

在上一篇文章中,我们说到 A R ( p ) {\rm AR}(p) AR(p)序列只需要用前 p p p个历史信息即可,这个结论与递推定理是否一致?现在假设 A R ( 1 ) {\rm AR}(1) AR(1)序列为
X t = a X t − 1 + ε t , ε t ∼ W N ( 0 , σ 2 ) . X_t=aX_{t-1}+\varepsilon_t,\quad \varepsilon_t\sim {\rm WN}(0,\sigma^2). Xt=aXt1+εt,εtWN(0,σ2).
给定三个观测值 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3,基于这三个观测值预测 X 4 X_4 X4,应该有
X ^ 4 = a x 3 . \hat X_4=ax_3. X^4=ax3.
是否如此?现在先计算自协方差函数之间的关系,显然有
γ 1 = E [ ( a X t − 1 + ε t ) X t − 1 ] = a γ 0 , γ k = E [ a ( X t − 1 + ε t ) X t − k ] = a γ k − 1 . \gamma_1={\rm E}[(aX_{t-1}+\varepsilon_t)X_{t-1}]=a\gamma_0,\\ \gamma_k={\rm E}[a(X_{t-1}+\varepsilon_{t})X_{t-k}]=a\gamma_{k-1}. γ1=E[(aXt1+εt)Xt1]=aγ0,γk=E[a(Xt1+εt)Xtk]=aγk1.
也就是 γ k = a k γ 0 \gamma_k=a^k\gamma_0 γk=akγ0,现在开始递推。

第一轮递推:
ν 0 = γ 0 , Z 1 = x 1 θ 1 , 1 = γ 1 γ 0 = a , X ^ 2 = a x 1 , Z 2 = X 2 − X ^ 2 = x 2 − a x 1 , ν 1 = γ 0 − θ 1 , 1 2 ν 0 = ( 1 − a 2 ) γ 0 . \nu_0=\gamma_0,Z_1=x_1 \\ \theta_{1,1}=\frac{\gamma_1}{\gamma_0}=a,\quad \hat X_2=ax_1,\\ Z_2=X_2-\hat X_2=x_2-ax_1,\quad \nu_1=\gamma_0-\theta_{1,1}^2\nu_0=(1-a^2)\gamma_0. \\ ν0=γ0,Z1=x1θ1,1=γ0γ1=a,X^2=ax1,Z2=X2X^2=x2ax1,ν1=γ0θ1,12ν0=(1a2)γ0.
第二轮递推:
θ 2 , 2 = γ 2 γ 0 = a 2 , θ 2 , 1 = γ 1 − θ 1 , 1 θ 2 , 2 ν 0 ν 1 = a , X ^ 3 = θ 2 , 2 Z 1 + θ 2 , 1 Z 2 = a 2 x 1 + a ( x 2 − a x 1 ) = a x 2 , Z 3 = x 3 − a x 2 , ν 2 = γ 0 − θ 2 , 2 2 ν 0 − θ 2 , 1 2 ν 1 = ( 1 − a 2 ) γ 0 . \theta_{2,2}=\frac{\gamma_2}{\gamma_0}=a^2,\quad \theta_{2,1}=\frac{\gamma_1-\theta_{1,1}\theta_{2,2}\nu_0}{\nu_1}=a,\\ \hat X_3=\theta_{2,2}Z_1+\theta_{2,1}Z_2=a^2x_1+a(x_2-ax_1)=ax_2,\\ Z_3=x_3-ax_2,\quad \nu_2=\gamma_0-\theta_{2,2}^2\nu_0-\theta_{2,1}^2\nu_1=(1-a^2)\gamma_0. θ2,2=γ0γ2=a2,θ2,1=ν1γ1θ1,1θ2,2ν0=a,X^3=θ2,2Z1+θ2,1Z2=a2x1+a(x2ax1)=ax2,Z3=x3ax2,ν2=γ0θ2,22ν0θ2,12ν1=(1a2)γ0.
第三轮递推:
θ 3 , 3 = γ 3 γ 0 = a 3 , θ 3 , 2 = γ 2 − θ 1 , 1 θ 3 , 3 ν 0 ν 1 = a 2 , θ 3 , 1 = γ 1 − θ 2 , 2 θ 3 , 3 ν 0 − θ 2 , 1 θ 3 , 2 ν 1 ν 2 = a , X ^ 4 = θ 3 , 3 Z 1 + θ 3 , 2 Z 2 + θ 3 , 1 Z 3 = a x 3 , ν 3 = γ 0 − θ 3 , 3 2 ν 0 − θ 3 , 2 2 ν 1 − θ 3 , 1 2 ν 2 = ( 1 − a 2 ) γ 0 . \theta_{3,3}=\frac{\gamma_3}{\gamma_0}=a^3,\quad \theta_{3,2}=\frac{\gamma_2-\theta_{1,1}\theta_{3,3}\nu_0}{\nu_1}=a^2,\\ \theta_{3,1}=\frac{\gamma_1-\theta_{2,2}\theta_{3,3}\nu_0-\theta_{2,1}\theta_{3,2}\nu_1}{\nu_2}=a,\\ \hat X_4=\theta_{3,3}Z_1+\theta_{3,2}Z_2+\theta_{3,1}Z_3=ax_3,\\ \nu_3=\gamma_0-\theta_{3,3}^2\nu_0-\theta_{3,2}^2\nu_1-\theta_{3,1}^2\nu_2=(1-a^2)\gamma_0. θ3,3=γ0γ3=a3,θ3,2=ν1γ2θ1,1θ3,3ν0=a2,θ3,1=ν2γ1θ2,2θ3,3ν0θ2,1θ3,2ν1=a,X^4=θ3,3Z1+θ3,2Z2+θ3,1Z3=ax3,ν3=γ0θ3,32ν0θ3,22ν1θ3,12ν2=(1a2)γ0.
可以看到使用递推得到的 X ^ 4 \hat X_4 X^4与直接代入 A R ( 1 ) {\rm AR}(1) AR(1)模型得到的结果一样,都是 a x 3 ax_3 ax3。事实上,由Y-W方程与最佳线性预测的性质,可以直接得到
L ( X n + 1 ∣ X n ) = Γ n − 1 γ n X n , L(X_{n+1}|\boldsymbol X_n)=\Gamma^{-1}_n\gamma_n\boldsymbol X_n, L(Xn+1Xn)=Γn1γnXn,
这就说明 X n \boldsymbol X_n Xn前面的系数是偏相关系数。从刚才的递推,我们还得到了其递推阵为
ν 0 θ 1 , 1 ν 1 θ 2 , 2 θ 2 , 1 ν 2 θ 3 , 3 θ 3 , 2 θ 3 , 1 ν 3 ⋯ ⋯ ⋯ ⋯ = γ 0 a ( 1 − a 2 ) γ 0 a 2 a ( 1 − a 2 ) γ 0 a 3 a 2 a ( 1 − a 2 ) γ 0 ⋯ ⋯ ⋯ ⋯ \begin{matrix} \nu_0 &&& \\ \theta_{1,1} & \nu_1 && \\ \theta_{2,2} & \theta_{2,1} & \nu_2 \\ \theta_{3,3} & \theta_{3,2} & \theta_{3,1} & \nu_3 \\ \cdots & \cdots & \cdots & \cdots \end{matrix}=\begin{matrix} \gamma_0 &&& \\ a & (1-a^2)\gamma_0 &&\\ a^2 & a & (1-a^2)\gamma_0 & \\ a^3 & a^2 & a & (1-a^2)\gamma_0 \\ \cdots & \cdots & \cdots & \cdots \end{matrix} ν0θ1,1θ2,2θ3,3ν1θ2,1θ3,2ν2θ3,1ν3=γ0aa2a3(1a2)γ0aa2(1a2)γ0a(1a2)γ0
可以看到 A R ( 1 ) {\rm AR}(1) AR(1)序列的递推系数具有很好的规律,对于 A R ( 2 ) {\rm AR}(2) AR(2)序列 X t = a 1 X t − 1 + a 2 X t − 2 + ε X_t=a_1X_{t-1}+a_2X_{t-2}+\varepsilon Xt=a1Xt1+a2Xt2+ε,则没有这么好的规律,但是 A R ( p ) {\rm AR}(p) AR(p)序列这种只依赖于前 p p p个历史信息的预测问题,在计算的时候是十分方便的。

最后说说 A R ( p ) {\rm AR}(p) AR(p)模型的递推预测: L ( X n + k ∣ X n ) L(X_{n+k}|\boldsymbol X_n) L(Xn+kXn),由最佳线性预测的线性性,有
L ( X n + k ∣ X n ) = L ( ∑ j = 1 p a j X n + k − j ∣ X n ) . L(X_{n+k}|\boldsymbol X_n)=L\left(\sum_{j=1}^pa_jX_{n+k-j}\bigg| \boldsymbol X_n \right). L(Xn+kXn)=L(j=1pajXn+kjXn).
由此递推计算其 k k k步预测。

2. M A ( 1 ) {\rm MA}(1) MA(1) M A ( 2 ) {\rm MA}(2) MA(2)序列

M A ( q ) {\rm MA}(q) MA(q)序列最重要的是它的 q q q后截尾性质,这使得它的递推系数也具有类似“截尾”的效果。我们先考虑 M A ( 1 ) {\rm MA}(1) MA(1)序列: X t = ε t + b ε t − 1 X_t=\varepsilon_t+b\varepsilon_{t-1} Xt=εt+bεt1,显然
γ 0 = ( 1 + b 2 ) σ 2 , γ 1 = b σ 2 , \gamma_0=(1+b^2)\sigma^2, \quad \gamma_1=b\sigma^2, γ0=(1+b2)σ2,γ1=bσ2,
对于 k ≥ 2 , γ k = 0 k\ge 2,\gamma_k=0 k2,γk=0。可惜的是,预测误差项与预测值并没有呈现什么关系,也不能由前 q q q个历史信息得到未来信息(而是用前 q q q个预测误差)。代入递推公式,有

第一轮递推:
ν 0 = γ 0 = ( 1 + b 2 ) σ 2 , θ 1 , 1 = γ 1 ν 0 , ν 1 = γ 0 − θ 1 , 1 2 ν 0 . \nu_0=\gamma_0=(1+b^2)\sigma^2,\\ \theta_{1,1}=\frac{\gamma_1}{\nu_0},\\ \nu_1=\gamma_0-\theta_{1,1}^2\nu_0. ν0=γ0=(1+b2)σ2,θ1,1=ν0γ1,ν1=γ0θ1,12ν0.
第二轮递推:
θ 2 , 2 = γ 2 γ 0 = 0 , θ 2 , 1 = γ 1 − θ 1 , 1 θ 2 , 2 ν 0 ν 1 = γ 1 ν 1 , ν 2 = γ 0 − θ 2 , 2 2 ν 0 − θ 2 , 1 2 ν 1 = γ 0 − θ 2 , 1 2 ν 1 . \theta_{2,2}=\frac{\gamma_2}{\gamma_0}=0,\quad \theta_{2,1}=\frac{\gamma_1-\theta_{1,1}\theta_{2,2}\nu_0}{\nu_1}=\frac{\gamma_1}{\nu_1},\\ \nu_2=\gamma_0-\theta_{2,2}^2\nu_0-\theta_{2,1}^2\nu_1=\gamma_0-\theta_{2,1}^2\nu_1. θ2,2=γ0γ2=0,θ2,1=ν1γ1θ1,1θ2,2ν0=ν1γ1,ν2=γ0θ2,22ν0θ2,12ν1=γ0θ2,12ν1.

第三轮递推:
θ 3 , 3 = γ 3 γ 0 , θ 3 , 2 = γ 2 − θ 1 , 1 θ 3 , 3 ν 0 ν 1 = 0 , θ 3 , 1 = γ 1 − θ 2 , 2 θ 3 , 3 ν 0 − θ 2 , 1 θ 3 , 2 ν 1 ν 2 = γ 1 ν 2 , ν 3 = γ 0 − θ 3 , 3 2 ν 0 − θ 3 , 2 2 ν 1 − θ 3 , 3 2 ν 2 . \theta_{3,3}=\frac{\gamma_3}{\gamma_0},\quad\theta_{3,2}=\frac{\gamma_2-\theta_{1,1}\theta_{3,3}\nu_0}{\nu_1}=0,\quad \theta_{3,1}=\frac{\gamma_1-\theta_{2,2}\theta_{3,3}\nu_0-\theta_{2,1}\theta_{3,2}\nu_1}{\nu_2}=\frac{\gamma_1}{\nu_2},\\ \nu_3=\gamma_0-\theta_{3,3}^2\nu_0-\theta_{3,2}^2\nu_1-\theta_{3,3}^2\nu_2. θ3,3=γ0γ3,θ3,2=ν1γ2θ1,1θ3,3ν0=0,θ3,1=ν2γ1θ2,2θ3,3ν0θ2,1θ3,2ν1=ν2γ1,ν3=γ0θ3,32ν0θ3,22ν1θ3,32ν2.
以此类推,我们可以得到以下的递推系数阵:
ν 0 θ 1 , 1 ν 1 θ 2 , 2 θ 2 , 1 ν 2 θ 3 , 3 θ 3 , 2 θ 3 , 1 ν 3 ⋯ ⋯ ⋯ ⋯ = γ 0 γ 1 ν 0 γ 0 − θ 1 , 1 2 ν 0 0 γ 1 ν 1 γ 0 − θ 2 , 1 2 ν 1 0 0 γ 1 ν 2 γ 0 − θ 3 , 1 2 ν 2 ⋯ ⋯ ⋯ ⋯ \begin{matrix} \nu_0 &&& \\ \theta_{1,1} & \nu_1 && \\ \theta_{2,2} & \theta_{2,1} & \nu_2 \\ \theta_{3,3} & \theta_{3,2} & \theta_{3,1} & \nu_3 \\ \cdots & \cdots & \cdots & \cdots \end{matrix}=\begin{matrix} \gamma_0 &&& \\ \frac{\gamma_1}{\nu_0} & \gamma_0-\theta_{1,1}^2\nu_0 &&\\ 0 & \frac{\gamma_1}{\nu_1} & \gamma_0-\theta_{2,1}^2\nu_1 & \\ 0 & 0 & \frac{\gamma_1}{\nu_2} & \gamma_0-\theta^2_{3,1}\nu_2 \\ \cdots & \cdots & \cdots & \cdots \end{matrix} ν0θ1,1θ2,2θ3,3ν1θ2,1θ3,2ν2θ3,1ν3=γ0ν0γ100γ0θ1,12ν0ν1γ10γ0θ2,12ν1ν2γ1γ0θ3,12ν2
可惜的是,我们只能得到系数的比较漂亮的递推式,但如果将其表示为 b b b的函数则没有很好的形式;而且,代入 x 1 , x 2 x_1,x_2 x1,x2等实际观测值后,在新的预测中也没有好的形式,因为对未来的预测总会用到所有历史信息(尽管只用到一个预测误差,但这个预测误差包含所有历史信息)。总结起来,就是
ν 0 = γ 0 , θ n , 1 = γ 1 ν n − 1 ; ν n = γ 0 − θ n , 1 2 ν n − 1 , ∀ j ≥ 2 , θ n , j = 0. \nu_0=\gamma_0,\quad \theta_{n,1}=\frac{\gamma_1}{\nu_{n-1}};\\ \nu_n=\gamma_0-\theta_{n,1}^2\nu_{n-1},\\ \forall j\ge 2,\quad \theta_{n,j}=0. ν0=γ0,θn,1=νn1γ1;νn=γ0θn,12νn1,j2,θn,j=0.
以上结论也可以用两步数学归纳法证明。设以上结论对 n < k , k ≥ 2 n<k,k\ge 2 n<k,k2都成立,则
θ k , k = γ k ν 0 = 0 ∵ k ≥ 2. \theta_{k,k}=\frac{\gamma_k}{\nu_0}=0\quad \because k\ge 2. θk,k=ν0γk=0k2.
假设 θ k , k − j = 0 \theta_{k,k-j}=0 θk,kj=0对所有 j ≤ m < k − 1 j\le m<k-1 jm<k1成立,则
θ k , k − m = γ k − m − ∑ j = 0 m − 1 θ k , k − j θ m , m − j ν j ν m = 0 , ∵ m < k − 1 , ∴ k − m > 1 , γ k − m = 0 ; ∵ θ k , k − j = 0 , ∀ j ≤ m , ∴ θ k , k − j = 0 , ∀ j = 0 , 1 , ⋯   , m − 1. \theta_{k,k-m}=\frac{\gamma_{k-m}-\sum_{j=0}^{m-1}\theta_{k,k-j}\theta_{m,m-j}\nu_j}{\nu_m}=0,\\ \because m<k-1,\quad \therefore k-m>1,\quad \gamma_{k-m}=0;\\ \because \theta_{k,k-j}=0,\forall j\le m,\quad \therefore \theta_{k,k-j}=0,\forall j=0,1,\cdots,m-1. θk,km=νmγkmj=0m1θk,kjθm,mjνj=0,m<k1,km>1,γkm=0;θk,kj=0,jm,θk,kj=0,j=0,1,,m1.
这就证明对所有 m ≥ 2 m\ge 2 m2 θ k , m = 0 \theta_{k,m}=0 θk,m=0,而
θ k , 1 = γ 1 − ∑ j = 0 m − 1 θ k , k − j θ m , m − j ν j ν k − 1 = γ 1 ν k − 1 . \theta_{k,1}=\frac{\gamma_1-\sum_{j=0}^{m-1}\theta_{k,k-j}\theta_{m,m-j}\nu_j}{\nu_{k-1}}=\frac{\gamma_1}{\nu_{k-1}}. θk,1=νk1γ1j=0m1θk,kjθm,mjνj=νk1γ1.
这就完成了结论的证明。

对于 M A ( 2 ) {\rm MA}(2) MA(2)序列,我们猜想也有类似的递推式,假设 M A ( 2 ) {\rm MA}(2) MA(2)模型是
X t = ε t + b 1 ε t − 1 + b 2 ε t − 2 . X_t=\varepsilon_t+b_1\varepsilon_{t-1}+b_2\varepsilon_{t-2}. Xt=εt+b1εt1+b2εt2.
所以对于 k ≥ 3 , γ 3 = 0 k\ge 3,\gamma_3=0 k3,γ3=0,容易递推得到:
ν 0 = γ 0 , θ 1 , 1 = γ 1 γ 0 , ν 1 = γ 0 − θ 1 , 1 2 ν 0 , ∀ n ≥ 2 : θ n , 2 = γ 2 ν n − 2 , θ n , 1 = γ 1 − θ n , 2 θ n − 1 , 1 ν n − 2 ν n − 1 . ∀ n ≥ 2 : ν n = γ 0 − θ n , 2 2 ν n − 2 − θ n , 1 2 ν n − 1 . ∀ n ≥ 3 , j ≥ 3 , j ≤ n : θ n , j = 0. \nu_0=\gamma_0,\quad \theta_{1,1}=\frac{\gamma_1}{\gamma_0},\quad \nu_1=\gamma_0-\theta_{1,1}^2\nu_0,\\ \forall n\ge2:\theta_{n,2}=\frac{\gamma_2}{\nu_{n-2}},\quad \theta_{n,1}=\frac{\gamma_1-\theta_{n,2}\theta_{n-1,1}\nu_{n-2}}{\nu_{n-1}}.\\ \forall n\ge 2:\nu_n=\gamma_0-\theta_{n,2}^2\nu_{n-2}-\theta_{n,1}^2\nu_{n-1}.\\ \forall n\ge 3,j\ge3,j\le n:\theta_{n,j}=0. ν0=γ0,θ1,1=γ0γ1,ν1=γ0θ1,12ν0,n2:θn,2=νn2γ2,θn,1=νn1γ1θn,2θn1,1νn2.n2:νn=γ0θn,22νn2θn,12νn1.n3,j3,jn:θn,j=0.
事实上, M A ( q ) {\rm MA}(q) MA(q)序列的递推都以前 q q q行作为递推基础,后面的行都可以用递推公式表达。

3. A R M A ( 1 , 1 ) {\rm ARMA}(1,1) ARMA(1,1)序列

A R M A ( p , q ) {\rm ARMA}(p,q) ARMA(p,q)序列是最繁琐的,但 A R M A ( 1 , 1 ) {\rm ARMA}(1,1) ARMA(1,1)序列由于阶数较低,还是可以尝试计算的,此时
m = max ⁡ ( p , q ) = 1. m=\max(p,q)=1. m=max(p,q)=1.
A R M A ( 1 , 1 ) {\rm ARMA}(1,1) ARMA(1,1)序列为
X t = a X t − 1 + ε t + b ε t − 1 , X_t=aX_{t-1}+\varepsilon_t+b\varepsilon_{t-1}, Xt=aXt1+εt+bεt1,
构造的辅助序列为:
Y t = { X t σ , t = 1 , X t − a X t − 1 σ , t > 2. Y_t=\left\{\begin{array}l \dfrac{X_t}{\sigma},&t=1,\\ \dfrac{X_t-aX_{t-1}}{\sigma},&t>2. \end{array}\right. Yt=σXt,σXtaXt1,t=1,t>2.
根据我们之前讨论的顺序,先从其协方差求起,以下将时间指标设为 s , t s,t s,t,由于 Y t Y_t Yt不平稳,需要分别讨论。由于 Y t Y_t Yt依赖于 X t X_t Xt,而 X t X_t Xt是平稳序列,所以先求 A R M A ( 1 , 1 ) {\rm ARMA}(1,1) ARMA(1,1)序列的自协方差函数。有
γ 0 = E ( X t 2 ) = E ( a X t − 1 + ε t + b ε t − 1 ) 2 = a 2 γ 0 + ( 1 + b 2 + 2 a b ) σ 2 , ⇒ γ 0 = 1 + b 2 + 2 a b 1 − a 2 σ 2 , γ 1 = E ( X t X t − 1 ) = E [ ( a X t − 1 + ε t + b ε t − 1 ) X t − 1 ] = a γ 0 + b σ 2 ⇒ γ 1 = a γ 0 + b σ 2 , ∀ k ≥ 2 : γ k = E ( X t X t − k ) = E [ ( a X t − 1 + ε t + b ε t − 1 ) X t − k ] = a γ k − 1 . \gamma_0={\rm E}(X_t^2)={\rm E}(aX_{t-1}+\varepsilon_t+b\varepsilon_{t-1})^2=a^2\gamma_0+(1+b^2+2ab)\sigma^2,\\ \Rightarrow \gamma_0=\frac{1+b^2+2ab}{1-a^2}\sigma^2,\\ \gamma_1={\rm E}(X_tX_{t-1})={\rm E}[(aX_{t-1}+\varepsilon_t+b\varepsilon_{t-1})X_{t-1}]=a\gamma_0+b\sigma^2\\ \Rightarrow \gamma_1=a\gamma_0+b\sigma^2,\\ \forall k\ge 2:\gamma_k={\rm E}(X_{t}X_{t-k})={\rm E}[(aX_{t-1}+\varepsilon_t+b\varepsilon_{t-1})X_{t-k}]=a\gamma_{k-1}. γ0=E(Xt2)=E(aXt1+εt+bεt1)2=a2γ0+(1+b2+2ab)σ2,γ0=1a21+b2+2abσ2,γ1=E(XtXt1)=E[(aXt1+εt+bεt1)Xt1]=aγ0+bσ2γ1=aγ0+bσ2,k2:γk=E(XtXtk)=E[(aXt1+εt+bεt1)Xtk]=aγk1.
s = t = 1 s=t=1 s=t=1时情况比较简单,就是
E ( Y s Y t ) = 1 σ 2 E ( X 1 2 ) = 1 + 2 a b + b 2 1 − a 2 . {\rm E}(Y_sY_t)=\frac{1}{\sigma^2}{\rm E}(X_1^2)=\frac{1+2ab+b^2}{1-a^2}. E(YsYt)=σ21E(X12)=1a21+2ab+b2.
s ≥ t > 1 s\ge t>1 st>1时, Y t Y_t Yt可以视为 M A ( 1 ) {\rm MA}(1) MA(1)序列 σ Y t = ε t + b ε t − 1 \sigma Y_t=\varepsilon_t+b\varepsilon_{t-1} σYt=εt+bεt1,所以其自协方差函数显然是
E ( Y t 2 ) = 1 + b 2 , t ≥ 2 , E ( Y t + 1 Y t ) = b , t ≥ 1. E ( Y t + k Y t ) = 0 , t ≥ 1 , k ≥ 2. {\rm E}(Y_t^2)=1+b^2,\quad t\ge 2,\\ {\rm E}(Y_{t+1}Y_{t})=b,\quad t\ge 1.\\ {\rm E}(Y_{t+k}Y_t)=0,\quad t\ge 1,k\ge 2. E(Yt2)=1+b2,t2,E(Yt+1Yt)=b,t1.E(Yt+kYt)=0,t1,k2.
这就求得了 Y t Y_t Yt的协方差。由于 t > 1 t>1 t>1时, Y t Y_t Yt M A ( 1 ) {\rm MA}(1) MA(1)序列,所以可以直接代入 M A ( 1 ) {\rm MA}(1) MA(1)的递推结论:
θ n , 1 = E ( Y n Y n + 1 ) ν n − 1 = b ν n − 1 , ∀ n ≥ j ≥ 2 : θ n , j = 0 , ν n = E ( Y n 2 ) − θ n , 1 2 ν n − 1 = 1 + b 2 − b 2 ν n − 1 . \theta_{n,1}=\frac{{\rm E}(Y_nY_{n+1})}{\nu_{n-1}}=\frac{b}{\nu_{n-1}},\\ \forall n\ge j\ge2:\theta_{n,j}=0,\\ \nu_n={\rm E}(Y_n^2)-\theta_{n,1}^2\nu_{n-1}=1+b^2-\frac{b^2}{\nu_{n-1}}. θn,1=νn1E(YnYn+1)=νn1b,nj2:θn,j=0,νn=E(Yn2)θn,12νn1=1+b2νn1b2.
最后加上递推初始值即可:
ν 0 = γ 0 = 1 + 2 a b + b 2 1 − a 2 . \nu_0=\gamma_0=\frac{1+2ab+b^2}{1-a^2}. ν0=γ0=1a21+2ab+b2.
这里要注意,在使用 M A ( 1 ) {\rm MA}(1) MA(1)序列递推时,应当用 M A ( 1 ) {\rm MA}(1) MA(1)序列的自协方差函数(而不是 A R M A ( 1 , 1 ) {\rm ARMA}(1,1) ARMA(1,1)序列的),如果搞不明白为什么,可以看看非平稳序列的递推公式(《十八、时间序列的递推预测》)。而初始递推值又应该使用 A R M A ( 1 , 1 ) {\rm ARMA}(1,1) ARMA(1,1)序列的自协方差函数,因为递推开始时有 ν 0 = E ( Y 1 2 ) \nu_0={\rm E}(Y_1^2) ν0=E(Y12)

此时我们得到了 Y t Y_t Yt的线性预测:
Y ^ n + 1 = θ n , 1 W n , W n = Y n − L ( Y n ∣ Y n − 1 ) . \hat Y_{n+1}=\theta_{n,1}W_n,\quad W_n=Y_n-L(Y_{n}|\boldsymbol Y_{n-1}). Y^n+1=θn,1Wn,Wn=YnL(YnYn1).
于是由于 X n + 1 = σ Y n + 1 + a X n X_{n+1}=\sigma Y_{n+1}+aX_n Xn+1=σYn+1+aXn,就有
X ^ n + 1 = θ n , 1 Z n + a X n , Z n = X n − L ( X n ∣ X n ) . \hat X_{n+1}=\theta_{n,1}Z_n+aX_n,\quad Z_n=X_n-L(X_n|\boldsymbol X_n). X^n+1=θn,1Zn+aXn,Zn=XnL(XnXn).
从上面的讨论我们也可以发现,讨论 A R M A ( p , q ) {\rm ARMA}(p,q) ARMA(p,q)序列时,我们往往不直接计算 A R M A ( p , q ) {\rm ARMA}(p,q) ARMA(p,q)序列的递推系数,而是选了一条看起来更艰难的路,构造了一个非平稳序列进行递推。但是,这个非平稳序列的后半部分是一个 M A ( q ) {\rm MA}(q) MA(q)序列,因此递推系数也有“截尾”性,还可以套 M A ( q ) {\rm MA}(q) MA(q)序列的递推式,因此只需要计算前 m m m项的递推基础即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值