接着前面一片博客继续讲,之前的博客中博主在Anaconda环境下使用Conda创建了新的环境,可参看如下博客
ultralytics/yolov3训练预测自己数据集的配置过程_jiugeshao的专栏-CSDN博客
下面也尝试在纯python环境下去创建虚拟环境,接着前面博客的python3.7继续分析,前面的python3.7的安装的库可从如下路径查看
博主这边已经是python3.4以上版本,自带了virtualenv工具,若没有使用命令pip install virtualenv
1.博主在pi目录下新建了一个PythonProject文件夹
2.cd到该目录下后,使用如下命令创建虚拟环境,这里我取名叫env
python3 -m venv env
如下路径可以看到创建的虚拟环境
3.如下命令激活该虚拟环境
source env/bin/activate
4.在该虚拟环境下可以安装你想要的第三方库,这里安装的是numpy
5.若要退出虚拟
详细示例可如下图所示
环境,直接使用deactivate命令即可
直接删除虚拟环境所在的文件夹venv就删除了我们创建的venv虚拟环境。
rm -r venv
补:若要安装虚拟环境的时候,指定python版本,可以用如下命令:
virtualenv venv --python=python2.7
进入虚拟环境,退出虚拟环境、删除虚拟环境方式同上,关于更多虚拟环境的操作可见文首的博客链接以及博客
博主之前博客中介绍了pycharm的安装,这里在树莓派上安装了一个2021.2.2的版本
Ubuntu20.04 C++程序的简单编译及QT和Pycharm的配置_jiugeshao的专栏-CSDN博客_pycharm编译c++
此时电脑上已经有了多个python环境,可以在Python Interpreter中切换不同的版本,如下方式