ROS 和 Gazebo 模拟器实现未知环境探索的快速探索随机树算法

这篇博客介绍了ROS在SLAM(同步定位和映射)中的应用,特别是使用快速探索随机树(RRT)算法进行路径规划。通过Gazebo模拟器,详细阐述了如何设置项目,使机器人自主探索环境并生成地图,最后执行路径规划到达目标位置。
摘要由CSDN通过智能技术生成

ROS 和同步定位和映射

ROS 最流行的应用之一是 SLAM(同步定位和映射)。 移动机器人中 SLAM 的目标是借助连接到机器人的可用传感器构建和更新未探索环境的地图,该传感器将用于探索。

快速探索随机树算法

快速探索随机树 (RRT) 是一种数据结构和算法,旨在有效搜索非凸高维空间。 RRT 以一种快速减少随机选择点到树的预期距离的方式递增构建。 RRT 特别适用于涉及障碍和差分约束(非完整或运动动力学)的路径规划问题。

同步定位和映射使用此算法

Gazebo 模拟器

ROS 探索快速探索随机树算法

在这个项目中需要执行三个主要步骤。

项目设置

自主 SLAM 演示主要执行

步骤 1:将机器人放置在 Gazebo 内的环境中

步骤 2:对环境进行自主探索并生成地图

在 RVIZ 窗口中为 RRT 设置探索区域

步骤 3:执行路径规划并在环境中到达目标

在 RVIZ 窗口中设定目标

源代码(预建的 ROS 包)

详情参阅 亚图跨际

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值