OpenCV相机标定与3D重建(33)检测图像中棋盘格图案角点的函数findChessboardCornersSB()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

使用基于扇区的方法查找棋盘格内部角点的位置。
cv::findChessboardCornersSB 是 OpenCV 中用于检测图像中棋盘格图案内部角点的函数,它使用了一种基于扇区(sector-based)的方法来提高角点检测的准确性和鲁棒性。

函数原型


bool cv::findChessboardCornersSB
(
	InputArray 	image,
	Size 	patternSize,
	OutputArray 	corners,
	int 	flags,
	OutputArray 	meta 
)		

参数

  • 参数image: 源棋盘格视图。必须是8位灰度或彩色图像。
  • 参数patternSize: 每个棋盘格行和列内的角点数量 (patternSize = cv::Size(points_per_row, points_per_column) = cv::Size(columns, rows)).
  • 参数corners: 输出数组,包含检测到的角点。
  • 参数flags: 可以为零或以下值的组合的操作标志:
    • CALIB_CB_NORMALIZE_IMAGE: 在检测前使用 equalizeHist 对图像伽马进行归一化。
    • CALIB_CB_EXHAUSTIVE: 运行详尽搜索以提高检测率。
    • CALIB_CB_ACCURACY: 上采样输入图像以提高由于别名效应引起的亚像素精度。
    • CALIB_CB_LARGER: 允许检测到的模式大于 patternSize(见描述)。
    • CALIB_CB_MARKER: 检测到的模式必须有标记(见描述)。如果需要精确的相机校准,则应使用此选项。
  • meta: 可选输出数组,用于存储检测到的角点(CV_8UC1 和大小 = cv::Size(columns,rows))。每个条目代表一个模式角点,可以具有以下值之一:
    • 0 = 没有附加元数据
    • 1 = 黑色单元格的左上角
    • 2 = 白色单元格的左上角
    • 3 = 带有白色标记点的黑色单元格的左上角
    • 4 = 带有黑色标记点的白色单元格的左上角(如果有标记,则为图案原点;否则为第一个角点)
      当提供了 CALIB_CB_LARGER 或 CALIB_CB_MARKER 标志时,可以从可选的 meta 数组恢复结果。这两个标志有助于使用超出相机视野的校准图案,这些过大的图案允许更精确的校准,因为可以利用尽可能接近图像边界的角点。为了确保所有图像之间的一致坐标系统,可选的标记(见下图)可用于将板的原点移动到黑圈所在的位置。

注意事项
函数要求棋盘格周围有一个大致与棋盘格字段宽度相同的白色边框,以改善在各种环境下的检测效果。此外,由于使用了局部化的拉东变换,对于位于板外部的字段角点,使用圆角是有益的。下图展示了一个优化用于检测的示例棋盘格。然而,也可以使用任何其他棋盘格。

您可以使用 gen_pattern.py(创建校准图案)来创建棋盘格。

代码示例


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

村北头的码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值