- 操作系统:ubuntu22.04
- OpenCV版本:OpenCV4.9
- IDE:Visual Studio Code
- 编程语言:C++11
算法描述
使用基于扇区的方法查找棋盘格内部角点的位置。
cv::findChessboardCornersSB 是 OpenCV 中用于检测图像中棋盘格图案内部角点的函数,它使用了一种基于扇区(sector-based)的方法来提高角点检测的准确性和鲁棒性。
函数原型
bool cv::findChessboardCornersSB
(
InputArray image,
Size patternSize,
OutputArray corners,
int flags,
OutputArray meta
)
参数
- 参数image: 源棋盘格视图。必须是8位灰度或彩色图像。
- 参数patternSize: 每个棋盘格行和列内的角点数量 (patternSize = cv::Size(points_per_row, points_per_column) = cv::Size(columns, rows)).
- 参数corners: 输出数组,包含检测到的角点。
- 参数flags: 可以为零或以下值的组合的操作标志:
- CALIB_CB_NORMALIZE_IMAGE: 在检测前使用 equalizeHist 对图像伽马进行归一化。
- CALIB_CB_EXHAUSTIVE: 运行详尽搜索以提高检测率。
- CALIB_CB_ACCURACY: 上采样输入图像以提高由于别名效应引起的亚像素精度。
- CALIB_CB_LARGER: 允许检测到的模式大于 patternSize(见描述)。
- CALIB_CB_MARKER: 检测到的模式必须有标记(见描述)。如果需要精确的相机校准,则应使用此选项。
- meta: 可选输出数组,用于存储检测到的角点(CV_8UC1 和大小 = cv::Size(columns,rows))。每个条目代表一个模式角点,可以具有以下值之一:
- 0 = 没有附加元数据
- 1 = 黑色单元格的左上角
- 2 = 白色单元格的左上角
- 3 = 带有白色标记点的黑色单元格的左上角
- 4 = 带有黑色标记点的白色单元格的左上角(如果有标记,则为图案原点;否则为第一个角点)
当提供了 CALIB_CB_LARGER 或 CALIB_CB_MARKER 标志时,可以从可选的 meta 数组恢复结果。这两个标志有助于使用超出相机视野的校准图案,这些过大的图案允许更精确的校准,因为可以利用尽可能接近图像边界的角点。为了确保所有图像之间的一致坐标系统,可选的标记(见下图)可用于将板的原点移动到黑圈所在的位置。
注意事项
函数要求棋盘格周围有一个大致与棋盘格字段宽度相同的白色边框,以改善在各种环境下的检测效果。此外,由于使用了局部化的拉东变换,对于位于板外部的字段角点,使用圆角是有益的。下图展示了一个优化用于检测的示例棋盘格。然而,也可以使用任何其他棋盘格。
您可以使用 gen_pattern.py(创建校准图案)来创建棋盘格。
代码示例