向量场中的几个恒等式

向量场中的几个恒等式

1. ∇ 2 A ⃗ = ∇ ( ∇ ⋅ A ⃗ ) − ∇ × ∇ × A ⃗ \nabla ^2 \vec A =\nabla (\nabla\cdot \vec A)-\nabla \times\nabla\times \vec A 2A =(A )××A

∇ = i ∂ ∂ x + j ∂ ∂ y + k ∂ ∂ z \nabla = i\frac{\partial}{\partial x} + j\frac{\partial}{\partial y} + k\frac{\partial}{\partial z} =ix+jy+kz是个矢量算子, ∇ 2 = ∇ ⋅ ∇ = ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 \nabla ^2 = \nabla \cdot \nabla =\frac{\partial ^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} 2==x22+y22+z22是个标量算子,又称拉普拉斯算子.

2. ∇ ⋅ ∇ × A ⃗ = 0 \nabla \cdot \nabla \times \vec A = 0 ×A =0

两向量的叉积得到的向量与这两个向量都正交. 即 A ⃗ × B ⃗ \vec A \times \vec B A ×B 与向量 A ⃗ \vec A A 正交,与向量 B ⃗ \vec B B 正交.

上式中,算子 ∇ \nabla 是向量,因此成立.

上式说明,任一矢量的旋度的散度为0, 即矢量场的旋度场为无源场. 如矢量位场 A ⃗ \vec A A 的旋度场为磁场 B ⃗ = ∇ ⋅ A ⃗ \vec B = \nabla \cdot \vec A B =A ,磁场是无源场, ∇ ⋅ B ⃗ = 0 \nabla \cdot \vec B = 0 B =0. 不存在磁荷,磁场的磁力线是无头无尾的闭合曲线.

3. ∇ × ∇ ϕ = 0 \nabla \times \nabla \phi=0 ×ϕ=0

标量的梯度的旋度为0, 即标量场的梯度场是无旋场. 如电位场是标量场,其负梯度场是电场强度场 E ⃗ = − ∇ φ \vec E = -\nabla \varphi E =φ,电场强度场 E ⃗ \vec E E 是无旋场,电场强度沿着任一闭合曲线的线积分为0. 即 ∮ l E ⃗ d l ⃗ = 0 \oint_l \vec E d\vec l=0 lE dl =0,微分形式为 ∇ × E ⃗ = 0 \nabla \times \vec E =0 ×E =0.

4. A ⃗ × ( B ⃗ × C ⃗ ) = ( A ⃗ ⋅ C ⃗ ) B ⃗ − ( A ⃗ ⋅ B ⃗ ) C ⃗ \vec A \times (\vec B \times \vec C)=(\vec A \cdot \vec C) \vec B-(\vec A \cdot \vec B) \vec C A ×(B ×C )=(A C )B (A B )C

A ⃗ \vec A A B ⃗ \vec B B 正交,则有 A ⃗ ⋅ B ⃗ = 0 \vec A \cdot \vec B = 0 A B =0, 可得到: A ⃗ × ( B ⃗ × C ⃗ ) = ( A ⃗ ⋅ C ⃗ ) B ⃗ \vec A \times (\vec B \times \vec C)=(\vec A \cdot \vec C) \vec B A ×(B ×C )=(A C )B

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JERRY. LIU

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值