向量场中的几个恒等式
1. ∇ 2 A ⃗ = ∇ ( ∇ ⋅ A ⃗ ) − ∇ × ∇ × A ⃗ \nabla ^2 \vec A =\nabla (\nabla\cdot \vec A)-\nabla \times\nabla\times \vec A ∇2A=∇(∇⋅A)−∇×∇×A
∇ = i ∂ ∂ x + j ∂ ∂ y + k ∂ ∂ z \nabla = i\frac{\partial}{\partial x} + j\frac{\partial}{\partial y} + k\frac{\partial}{\partial z} ∇=i∂x∂+j∂y∂+k∂z∂是个矢量算子, ∇ 2 = ∇ ⋅ ∇ = ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 \nabla ^2 = \nabla \cdot \nabla =\frac{\partial ^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} ∇2=∇⋅∇=∂x2∂2+∂y2∂2+∂z2∂2是个标量算子,又称拉普拉斯算子.
2. ∇ ⋅ ∇ × A ⃗ = 0 \nabla \cdot \nabla \times \vec A = 0 ∇⋅∇×A=0
两向量的叉积得到的向量与这两个向量都正交. 即 A ⃗ × B ⃗ \vec A \times \vec B A×B与向量 A ⃗ \vec A A正交,与向量 B ⃗ \vec B B正交.
上式中,算子 ∇ \nabla ∇是向量,因此成立.
上式说明,任一矢量的旋度的散度为0, 即矢量场的旋度场为无源场. 如矢量位场 A ⃗ \vec A A的旋度场为磁场 B ⃗ = ∇ ⋅ A ⃗ \vec B = \nabla \cdot \vec A B=∇⋅A,磁场是无源场, ∇ ⋅ B ⃗ = 0 \nabla \cdot \vec B = 0 ∇⋅B=0. 不存在磁荷,磁场的磁力线是无头无尾的闭合曲线.
3. ∇ × ∇ ϕ = 0 \nabla \times \nabla \phi=0 ∇×∇ϕ=0
标量的梯度的旋度为0, 即标量场的梯度场是无旋场. 如电位场是标量场,其负梯度场是电场强度场 E ⃗ = − ∇ φ \vec E = -\nabla \varphi E=−∇φ,电场强度场 E ⃗ \vec E E 是无旋场,电场强度沿着任一闭合曲线的线积分为0. 即 ∮ l E ⃗ d l ⃗ = 0 \oint_l \vec E d\vec l=0 ∮lEdl=0,微分形式为 ∇ × E ⃗ = 0 \nabla \times \vec E =0 ∇×E=0.
4. A ⃗ × ( B ⃗ × C ⃗ ) = ( A ⃗ ⋅ C ⃗ ) B ⃗ − ( A ⃗ ⋅ B ⃗ ) C ⃗ \vec A \times (\vec B \times \vec C)=(\vec A \cdot \vec C) \vec B-(\vec A \cdot \vec B) \vec C A×(B×C)=(A⋅C)B−(A⋅B)C
若 A ⃗ \vec A A与 B ⃗ \vec B B正交,则有 A ⃗ ⋅ B ⃗ = 0 \vec A \cdot \vec B = 0 A⋅B=0, 可得到: A ⃗ × ( B ⃗ × C ⃗ ) = ( A ⃗ ⋅ C ⃗ ) B ⃗ \vec A \times (\vec B \times \vec C)=(\vec A \cdot \vec C) \vec B A×(B×C)=(A⋅C)B