两天一口气看完《推荐系统实践》,非常的爽,收获非常的大。作者不仅是技术性介绍,更是结合自己的商业理解。加上作者长时间的竞赛工作第一手经验,本书价值非常大!!!
作者:项亮
出版社: 人民邮电出版社
图灵原创
笔记作者:jinwangjoshua(Github欢迎加星)
第三章 推荐系统冷启动问题
冷启动问题简介:主要分为三类
- 用户冷启动: 用户冷启动主要解决如何给新用户做个性化推荐的问题。
- 物品冷启动:物品冷启动主要解决如何将新的物品推荐给可能对它感兴趣的用户这一问题。
- 系统冷启动:系统冷启动主要解决如何在一个新开发的网站上(还没有用户,也没有用 户行为,只有一些物品的信息)设计个性化推荐系统
解决方案
- 非个性化推荐:热门排行榜等
- 用户注册信息:年龄,性别,地址进行粗粒度个性化
- 社交推荐:若是社交登录,推荐好友喜欢的物品
- 注册之后立刻进行测试
- 物品:新加入物品利用内容信息,推给需要相似物品的用户
- 系统:系统冷启动引入专家知识,迅速建立物品相关度表
用户冷启动:用户注册信息
- 人口统计学信息:年龄,地址,性别,学历
○ 典型代表是Bruce Krulwich开发的Lifest
- 人口统计学信息:年龄,地址,性别,学历