/**
* @file Tracking.cc
* @author guoqing (1337841346@qq.com)
* @brief 追踪线程
* @version 0.1
* @date 2019-02-21
*
* @copyright Copyright (c) 2019
*
*/
/**
* This file is part of ORB-SLAM2.
*
* Copyright (C) 2014-2016 Raúl Mur-Artal <raulmur at unizar dot es> (University of Zaragoza)
* For more information see <https://github.com/raulmur/ORB_SLAM2>
*
* ORB-SLAM2 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* ORB-SLAM2 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with ORB-SLAM2. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Tracking.h"
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include "ORBmatcher.h"
#include "FrameDrawer.h"
#include "Converter.h"
#include "Map.h"
#include "Initializer.h"
#include "Optimizer.h"
#include "PnPsolver.h"
#include <iostream>
#include <cmath>
#include <mutex>
using namespace std;
// 程序中变量名的第一个字母如果为"m"则表示为类中的成员变量,member
// 第一个、第二个字母:
// "p"表示指针数据类型
// "n"表示int类型
// "b"表示bool类型
// "s"表示set类型
// "v"表示vector数据类型
// 'l'表示list数据类型
// "KF"表示KeyFrame数据类型
namespace ORB_SLAM2
{
///构造函数
/**
* Step 1 从配置文件中加载相机参数-----相机内参、畸变参数、mbf--双目摄像头相机的基线长度 * 相机的焦距、 、Max/Min Frames to insert keyframes and to check relocalisation、以及相机颜色通道顺序是RGB还是BGR
* Step 2 加载ORB特征点有关的参数,并新建特征点提取器 比如每一帧提取的特征点数 1000、图像建立金字塔时的变化尺度 1.2、尺度金字塔的层数 8、 提取fast特征点的默认阈值 20 fast20、如果默认阈值提取不出足够fast特征点,则使用最小阈值 8
* tracking过程都会用到mpORBextractorLeft作为特征点提取器、如果是双目,tracking过程中还会用用到mpORBextractorRight作为右目特征点提取器
* 在单目初始化的时候,会用mpIniORBextractor来作为特征点提取器 mpIniORBextractor要提取2000个特征点(单目初始化的时候,第一个图片要提取2000个特征点)
* 如果是双目或者RGBD mThDepth判断一个3D点远/近的阈值 mbf * 35 / fx、ThDepth其实就是表示基线长度的多少倍
* 如果是RGBD mDepthMapFactor--深度相机disparity转化为depth时的因子
**/
Tracking::Tracking(
System *pSys, //系统实例
ORBVocabulary* pVoc, //BOW字典
FrameDrawer *pFrameDrawer, //帧绘制器
MapDrawer *pMapDrawer, //地图点绘制器
Map *pMap, //地图句柄
KeyFrameDatabase* pKFDB, //关键帧产生的词袋数据库
const string &strSettingPath, //配置文件路径
const int sensor): //传感器类型
mState(NO_IMAGES_YET), //当前系统还没有准备好
mSensor(sensor),
mbOnlyTracking(false), //处于SLAM模式
mbVO(false), //当处于纯跟踪模式的时候,这个变量表示了当前跟踪状态的好坏
mpORBVocabulary(pVoc),
mpKeyFrameDB(pKFDB),
mpInitializer(static_cast<Initializer*>(NULL)), //暂时给地图初始化器设置为空指针
mpSystem(pSys),
mpViewer(NULL), //注意可视化的查看器是可选的,因为ORB-SLAM2最后是被编译成为一个库,所以对方人拿过来用的时候也应该有权力说我不要可视化界面(何况可视化界面也要占用不少的CPU资源)
mpFrameDrawer(pFrameDrawer),
mpMapDrawer(pMapDrawer),
mpMap(pMap),
mnLastRelocFrameId(0) //恢复为0,没有进行这个过程的时候的默认值
{
// Load camera parameters from settings file
// Step 1 从配置文件中加载相机参数
cv::FileStorage fSettings(strSettingPath, cv::FileStorage::READ);
float fx = fSettings["Camera.fx"];
float fy = fSettings["Camera.fy"];
float cx = fSettings["Camera.cx"];
float cy = fSettings["Camera.cy"];
// |fx 0 cx|
// K = |0 fy cy|
// |0 0 1 |
//构造相机内参矩阵
cv::Mat K = cv::Mat::eye(3,3,CV_32F);
K.at<float>(0,0) = fx;
K.at<float>(1,1) = fy;
K.at<float>(0,2) = cx;
K.at<float>(1,2) = cy;
K.copyTo(mK);
// 图像矫正系数
// [k1 k2 p1 p2 k3]
cv::Mat DistCoef(4,1,CV_32F);
DistCoef.at<float>(0) = fSettings["Camera.k1"];
DistCoef.at<float>(1) = fSettings["Camera.k2"];
DistCoef.at<float>(2) = fSettings["Camera.p1"];
DistCoef.at<float>(3) = fSettings["Camera.p2"];
const float k3 = fSettings["Camera.k3"];
//有些相机的畸变系数中会没有k3项
if(k3!=0)
{
DistCoef.resize(5);
DistCoef.at<float>(4) = k3;
}
DistCoef.copyTo(mDistCoef);
// 双目摄像头baseline * fx 50
mbf = fSettings["Camera.bf"];//相机的基线长度 * 相机的焦距
float fps = fSettings["Camera.fps"];
if(fps==0)
fps=30;
// Max/Min Frames to insert keyframes and to check relocalisation
mMinFrames = 0;
mMaxFrames = fps;
//输出
cout << endl << "Camera Parameters: " << endl;
cout << "- fx: " << fx << endl;
cout << "- fy: " << fy << endl;
cout << "- cx: " << cx << endl;
cout << "- cy: " << cy << endl;
cout << "- k1: " << DistCoef.at<float>(0) << endl;
cout << "- k2: " << DistCoef.at<float>(1) << endl;
if(DistCoef.rows==5)
cout << "- k3: " << DistCoef.at<float>(4) << endl;
cout << "- p1: " << DistCoef.at<float>(2) << endl;
cout << "- p2: " << DistCoef.at<float>(3) << endl;
cout << "- fps: " << fps << endl;
// 1:RGB 0:BGR
int nRGB = fSettings["Camera.RGB"];
mbRGB = nRGB;
if(mbRGB)
cout << "- color order: RGB (ignored if grayscale)" << endl;
else
cout << "- color order: BGR (ignored if grayscale)" << endl;
// Load ORB parameters
// Step 2 加载ORB特征点有关的参数,并新建特征点提取器
// 每一帧提取的特征点数 1000
int nFeatures = fSettings["ORBextractor.nFeatures"];
// 图像建立金字塔时的变化尺度 1.2
float fScaleFactor = fSettings["ORBextractor.scaleFactor"];
// 尺度金字塔的层数 8
int nLevels = fSettings["ORBextractor.nLevels"];
// 提取fast特征点的默认阈值 20 fast20
int fIniThFAST = fSettings["ORBextractor.iniThFAST"];
// 如果默认阈值提取不出足够fast特征点,则使用最小阈值 8
int fMinThFAST = fSettings["ORBextractor.minThFAST"];
// tracking过程都会用到mpORBextractorLeft作为特征点提取器
mpORBextractorLeft = new ORBextractor(
nFeatures, //参数的含义还是看上面的注释吧
fScaleFactor,
nLevels,
fIniThFAST,
fMinThFAST);
// 如果是双目,tracking过程中还会用用到mpORBextractorRight作为右目特征点提取器
if(sensor==System::STEREO)
mpORBextractorRight = new ORBextractor(nFeatures,fScaleFactor,nLevels,fIniThFAST,fMinThFAST);
// 在单目初始化的时候,会用mpIniORBextractor来作为特征点提取器 mpIniORBextractor要提取2000个特征点(单目初始化的时候,第一个图片要提取2000个特征点)
if(sensor==System::MONOCULAR)
mpIniORBextractor = new ORBextractor(2*nFeatures,fScaleFactor,nLevels,fIniThFAST,fMinThFAST);
cout << endl << "ORB Extractor Parameters: " << endl;
cout << "- Number of Features: " << nFeatures << endl;
cout << "- Scale Levels: " << nLevels << endl;
cout << "- Scale Factor: " << fScaleFactor << endl;
cout << "- Initial Fast Threshold: " << fIniThFAST << endl;
cout << "- Minimum Fast Threshold: " << fMinThFAST << endl;
//如果传感器是双目或者RGBD
if(sensor==System::STEREO || sensor==System::RGBD)
{
// mThDepth判断一个3D点远/近的阈值 mbf * 35 / fx
//ThDepth其实就是表示基线长度的多少倍
mThDepth = mbf*(float)fSettings["ThDepth"]/fx;
cout << endl << "Depth Threshold (Close/Far Points): " << mThDepth << endl;
}
if(sensor==System::RGBD)
{
//将深度相机的disparity转为Depth , 也就是转换成为真正尺度下的深度
// mDepthMapFactor--深度相机disparity转化为depth时的因子
mDepthMapFactor = fSettings["DepthMapFactor"];
if(fabs(mDepthMapFactor)<1e-5)
mDepthMapFactor=1;
else
mDepthMapFactor = 1.0f/mDepthMapFactor;
}
}
//创建基本的类
//设置局部建图器
void Tracking::SetLocalMapper(LocalMapping *pLocalMapper)
{
mpLocalMapper=pLocalMapper;
}
//设置回环检测器
void Tracking::SetLoopClosing(LoopClosing *pLoopClosing)
{
mpLoopClosing=pLoopClosing;
}
//设置可视化查看器
void Tracking::SetViewer(Viewer *pViewer)
{
mpViewer=pViewer;
}
/**
* 这里是双目的获取图片的函数、同时利用获得的灰度图构建当前帧,进行tracking过程,得到世界到相机的位姿变换
**/
// 输入左右目图像,可以为RGB、BGR、RGBA、GRAY
// 1、将图像转为mImGray和imGrayRight并初始化mCurrentFrame
// 2、进行tracking过程
// 输出世界坐标系到该帧相机坐标系的变换矩阵
cv::Mat Tracking::GrabImageStereo(
const cv::Mat &imRectLeft, //左侧图像
const cv::Mat &imRectRight, //右侧图像
const double ×tamp) //时间戳
{
mImGray = imRectLeft;
cv::Mat imGrayRight = imRectRight;
// step 1 :将RGB或RGBA图像转为灰度图像
if(mImGray.channels()==3)
{
if(mbRGB)
{
cvtColor(mImGray,mImGray,CV_RGB2GRAY);
cvtColor(imGrayRight,imGrayRight,CV_RGB2GRAY);
}
else
{
cvtColor(mImGray,mImGray,CV_BGR2GRAY);
cvtColor(imGrayRight,imGrayRight,CV_BGR2GRAY);
}
}
// 这里考虑得十分周全,甚至连四通道的图像都考虑到了 个人映像里四通道多了个alpha透明度吧
else if(mImGray.channels()==4)
{
if(mbRGB)
{
cvtColor(mImGray,mImGray,CV_RGBA2GRAY);
cvtColor(imGrayRight,imGrayRight,CV_RGBA2GRAY);
}
else
{
cvtColor(mImGray,mImGray,CV_BGRA2GRAY);
cvtColor(imGrayRight,imGrayRight,CV_BGRA2GRAY);
}
}
// Step 2 :构造Frame
mCurrentFrame = Frame(
mImGray, //左目图像
imGrayRight, //右目图像
timestamp, //时间戳
mpORBextractorLeft, //左目特征提取器
mpORBextractorRight, //右目特征提取器
mpORBVocabulary, //字典
mK, //内参矩阵
mDistCoef, //去畸变参数
mbf, //基线长度
mThDepth); //远点,近点的区分阈值
// Step 3 :跟踪
Track();//追踪就应该是计算位姿
//返回位姿
return mCurrentFrame.mTcw.clone();
}
/**
* 这里是RGBD的获取图片的函数、同时利用获得的灰度图构建当前帧,进行tracking过程,得到世界到相机的位姿变换
**/
// 输入左目RGB或RGBA图像和深度图
// 1、将图像转为mImGray和imDepth并初始化mCurrentFrame
// 2、进行tracking过程
// 输出世界坐标系到该帧相机坐标系的变换矩阵
cv::Mat Tracking::GrabImageRGBD(
const cv::Mat &imRGB, //彩色图像
const cv::Mat &imD, //深度图像
const double ×tamp) //时间戳
{
mImGray = imRGB;
cv::Mat imDepth = imD;
// step 1:将RGB或RGBA图像转为灰度图像
if(mImGray.channels()==3)
{
if(mbRGB)
cvtColor(mImGray,mImGray,CV_RGB2GRAY);
else
cvtColor(mImGray,mImGray,CV_BGR2GRAY);
}
else if(mImGray.channels()==4)
{
if(mbRGB)
cvtColor(mImGray,mImGray,CV_RGBA2GRAY);
else
cvtColor(mImGray,mImGray,CV_BGRA2GRAY);
}
// step 2 :将深度相机的disparity转为Depth , 也就是转换成为真正尺度下的深度
//这里的判断条件感觉有些尴尬
//前者和后者满足一个就可以了
//mDepthMapFactor--深度相机disparity转化为depth时的因子
//满足前者意味着,mDepthMapFactor 相对1来讲要足够大
//满足后者意味着,如果深度图像不是浮点型? 才会执行
//意思就是说,如果读取到的深度图像是浮点型,就不执行这个尺度的变换操作了呗? TODO
if((fabs(mDepthMapFactor-1.0f)>1e-5) || imDepth.type()!=CV_32F) //深度图得是CV_32F
imDepth.convertTo( //将图像转换成为另外一种数据类型,具有可选的数据大小缩放系数
imDepth, //输出图像
CV_32F, //输出图像的数据类型
mDepthMapFactor); //缩放系数
// 步骤3:构造Frame
mCurrentFrame = Frame(
mImGray, //灰度图像
imDepth, //深度图像
timestamp, //时间戳
mpORBextractorLeft, //ORB特征提取器
mpORBVocabulary, //词典
mK, //相机内参矩阵
mDistCoef, //相机的去畸变参数
mbf, //相机基线*相机焦距
mThDepth); //内外点区分深度阈值
// 步骤4:跟踪
Track();
//返回当前帧的位姿
return mCurrentFrame.mTcw.clone();
}
/**
* @brief
* 输入左目RGB或RGBA图像,输出世界坐标系到该帧相机坐标系的变换矩阵
*
* @param[in] im 单目图像
* @param[in] timestamp 时间戳
* @return cv::Mat
*
* Step 1 :将彩色图像转为灰度图像
* Step 2 :构造Frame
* Step 3 :跟踪
*/
cv::Mat Tracking::GrabImageMonocular(const cv::Mat &im,const double ×tamp)
{
mImGray = im;
// Step 1 :将彩色图像转为灰度图像
//若图片是3、4通道的,还需要转化成灰度图
if(mImGray.channels()==3)
{
if(mbRGB)
cvtColor(mImGray,mImGray,CV_RGB2GRAY);
else
cvtColor(mImGray,mImGray,CV_BGR2GRAY);
}
else if(mImGray.channels()==4)
{
if(mbRGB)
cvtColor(mImGray,mImGray,CV_RGBA2GRAY);
else
cvtColor(mImGray,mImGray,CV_BGRA2GRAY);
}
// Step 2 :构造Frame
//判断该帧是不是初始化
if(mState==NOT_INITIALIZED || mState==NO_IMAGES_YET) //没有成功初始化的前一个状态就是NO_IMAGES_YET
mCurrentFrame = Frame(
mImGray,
timestamp,
mpIniORBextractor, //初始化ORB特征点提取器会提取2倍的指定特征点数目
mpORBVocabulary,
mK,
mDistCoef,
mbf,
mThDepth);
else
mCurrentFrame = Frame(
mImGray,
timestamp,
mpORBextractorLeft, //正常运行的时的ORB特征点提取器,提取指定数目特征点
mpORBVocabulary,
mK,
mDistCoef,
mbf,
mThDepth);
// Step 3 :跟踪
Track();
//返回当前帧的位姿
return mCurrentFrame.mTcw.clone();
}
/*
* @brief Main tracking function. It is independent of the input sensor.
*
* track包含两部分:估计运动、跟踪局部地图
*
* Step 1:初始化
* Step 2:跟踪
* Step 3:记录位姿信息,用于轨迹复现
*/
/**
* NO_IMAGES_YET等同于NOT_INITIALIZED
* 首先判断状态,如果状态是NOT_INITIALIZED 那么要进行初始化
* step1 初始化 根据相机类型选择初始化函数 ---- StereoInitialization()-双目/RGBD MonocularInitialization()-单目;
*
* step2 系统初始化过后,跟踪帧---总之就是计算当前帧的位姿
* 跟踪分为两种
* 1、跟踪进入正常SLAM模式,有地图更新 不仅追踪 同时局部地图被激活
* 1.1 正常初始化成功
* 运动模型是空的或刚完成重定位,跟踪参考关键帧;否则恒速模型跟踪( 第一个条件,如果运动模型为空,说明是刚初始化开始,或者已经跟丢了
第二个条件,如果当前帧紧紧地跟着在重定位的帧的后面,我们将重定位帧来恢复位姿)
* 如果恒速模型跟踪失败那也要跟踪参考关键帧
* 1.2 如果跟踪状态不成功,那么就只能重定位了---BOW搜索,EPnP求解位姿----重定位的函数挺复杂的
* 2、只进行跟踪tracking,局部地图不工作
* 2.1 如果状态是跟踪丢失 只能重定位了---BOW搜索,EPnP求解位姿----重定位的函数挺复杂的
* 2.2 如果状态没有跟踪丢失(因为此时已经初始化了,状态没有跟踪丢失,就是跟踪正常)
* mbVO是mbOnlyTracking为true时的才有的一个变量
* mbVO为false表示此帧匹配了很多的MapPoints,跟踪很正常 (注意有点反直觉)
* mbVO为true表明此帧匹配了很少的MapPoints,少于10个,要跪的节奏
* 2.2.1 mbvO为false时,利用恒速模型或者参考帧计算当前帧位姿
* 2.2.2 mbvO为true时,这时候点不够多,恒速模型,重定位都用上,更相信重定位,通过这个得到位姿 ,重定位和恒速模型有一个成功就行
*
* Step 3 在跟踪得到当前帧初始姿态后,现在对local map进行跟踪得到更多的匹配,并优化当前位姿
* 前面只是跟踪一帧得到初始位姿,这里搜索局部关键帧、局部地图点,和当前帧进行投影匹配,得到更多匹配的MapPoints后进行Pose优化
* 3.1 跟踪进入正常SLAM模式,有地图更新 调用TrackLocalMap()函数,进行局部地图跟踪,得到优化的位姿
* 3.2 只进行跟踪tracking,局部地图不工作 这里是恒速模型,重定位都用到
*step3中两种情况都要追踪局部地图 最终 返回局部追踪后的状态 如果局部追踪成功,状态就是OK 否则就是 LOST
*
* Step 4 更新显示线程中的图像、特征点、地图点等信息----mpFrameDrawer->Update(this);
*
* 只有在成功追踪时才考虑生成关键帧的问题
*
* Step 5 跟踪成功,更新恒速运动模型----肯定要更新哦,因为得到当前帧的位姿,之前的恒速模型是上上帧到上帧的模型,追踪成功后,恒速模型肯定变成从上一帧到当前帧了
*
* 更新显示中的位姿----当前帧的位姿已经通过追踪得到啦!
*
* Step 6 清除观测不到的地图点----个人理解是,当前帧上的有些特征点在空间中没有与之对应的路标点(3d),就让这些点存空指针,
*
* Step 7 清除恒速模型跟踪中 UpdateLastFrame中为当前帧临时添加的MapPoints(仅双目和rgbd)---添加临时的地图点为了提高追踪精度吧
* 步骤6中只是在当前帧中将这些MapPoints剔除,这里从MapPoints数据库中删除
* 临时地图点仅仅是为了提高双目或rgbd摄像头的帧间跟踪效果,用完以后就扔了,没有添加到地图中
* 不仅仅是清除临时添加的MapPoints-mlpTemporalPoints,通过delete pMP还删除了指针指向的MapPoint--??不太懂
*
* Step 8 检测并插入关键帧,对于双目或RGB-D会产生新的地图点
*
* Step 9 删除那些在bundle adjustment中检测为outlier的地图点
* 作者这里说允许在BA中被Huber核函数判断为外点的传入新的关键帧中,让后续的BA来审判他们是不是真正的外点
* 但是估计下一帧位姿的时候我们不想用这些外点,所以删掉
* Step 10 如果初始化后不久就跟踪失败,并且relocation也没有搞定,只能重新Reset
*
* Step 11 记录位姿信息,用于最后保存所有的轨迹
* 11.1 如果当前帧跟踪好了,保存跟踪成功的位姿信息
* 计算相对位姿-Tcr = Tcw * Twr, Twr = Trw^-1
* 11.2 如果跟踪失败,则相对位姿使用上一次值
*
*/
void Tracking::Track()
{
// track包含两部分:估计运动、跟踪局部地图
// mState为tracking的状态,包括 SYSTME_NOT_READY, NO_IMAGE_YET, NOT_INITIALIZED, OK, LOST
// 如果图像复位过、或者第一次运行,则为NO_IMAGE_YET状态
if(mState==NO_IMAGES_YET)
{
mState = NOT_INITIALIZED;//如果没有图片也算是没有初始化
}
// mLastProcessedState 存储了Tracking最新的状态,用于FrameDrawer中的绘制
mLastProcessedState=mState;
// Get Map Mutex -> Map cannot be changed
// 上锁。保证地图不会发生变化
// 疑问:这样子会不会影响地图的更新?
// 回答:主要耗时在构造帧中特征点的提取和匹配部分,在那个时候地图是没有被上锁的,有足够的时间更新地图
unique_lock<mutex> lock(mpMap->mMutexMapUpdate);
// Step 1:初始化
if(mState==NOT_INITIALIZED)
{
if(mSensor==System::STEREO || mSensor==System::RGBD)
//双目RGBD相机的初始化共用一个函数
StereoInitialization();
else
//单目初始化
MonocularInitialization();
//更新帧绘制器中存储的最新状态
mpFrameDrawer->Update(this);
//这个状态量在上面的初始化函数中被更新
if(mState!=OK)
return;
}
else
{
//系统已经初始化 ,跟踪帧
// System is initialized. Track Frame.
// bOK为临时变量,用于表示每个函数是否执行成功
bool bOK;
// Initial camera pose estimation using motion model or relocalization (if tracking is lost)
// mbOnlyTracking等于false表示正常SLAM模式(定位+地图更新),mbOnlyTracking等于true表示仅定位模式
// tracking 类构造时默认为false。在viewer中有个开关ActivateLocalizationMode,可以控制是否开启mbOnlyTracking
if(!mbOnlyTracking)// Step 2:跟踪进入正常SLAM模式,有地图更新 不仅追踪 同时局部地图被激活
{
// Local Mapping is activated. This is the normal behaviour, unless
// you explicitly activate the "only tracking" mode.
// Step 2:跟踪进入正常SLAM模式,有地图更新
// 正常初始化成功
if(mState==OK)
{
// Local Mapping might have changed some MapPoints tracked in last frame
// Step 2.1 检查并更新上一帧被替换的MapPoints
// 局部建图线程则可能会对原有的地图点进行替换.在这里进行检查
CheckReplacedInLastFrame();
// Step 2.2 运动模型是空的或刚完成重定位,跟踪参考关键帧;否则恒速模型跟踪
// 第一个条件,如果运动模型为空,说明是刚初始化开始,或者已经跟丢了
// 第二个条件,如果当前帧紧紧地跟着在重定位的帧的后面,我们将重定位帧来恢复位姿
// mnLastRelocFrameId 上一次重定位的那一帧
if(mVelocity.empty() || mCurrentFrame.mnId<mnLastRelocFrameId+2)
{
// 用最近的关键帧来跟踪当前的普通帧
// 通过BoW的方式在参考帧中找当前帧特征点的匹配点
// 优化每个特征点都对应3D点重投影误差即可得到位姿
bOK = TrackReferenceKeyFrame();//跟踪参考帧
}
else
{
ORBSLAM2总结之-Tracking.cpp
最新推荐文章于 2023-02-09 21:38:15 发布
本文详细总结了ORBSLAM2的Tracking.cpp文件,深入探讨了SLAM(Simultaneous Localization And Mapping)中视觉定位的关键技术,包括特征匹配、位姿估计和回环检测等核心过程,为理解C++实现的SLAM系统提供了宝贵资料。
摘要由CSDN通过智能技术生成