SLAM十四讲-ch8-直接法(包含手写单层、多层光流跟踪和直接法代码的注释)

33 篇文章 7 订阅
4 篇文章 1 订阅

一、利用cv的光流追踪函数进行光流跟踪

void cv::calcOpticalFlowPyrLK	(
        InputArray 	prevImg,
        InputArray 	nextImg,
        InputArray 	prevPts,
        InputOutputArray 	nextPts,
        OutputArray 	status,
        OutputArray 	err,
        Size 	winSize = Size(21, 21),
        int 	maxLevel = 3,
        TermCriteria 	criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
        int 	flags = 0,
        double 	minEigThreshold = 1e-4
)	
//使用具有金字塔的迭代Lucas-Kanade方法计算稀疏特征集的光流。
//参数:
//
//prevImg :buildOpticalFlowPyramid构造的第一个8位输入图像或金字塔。
//nextImg :与prevImg相同大小和相同类型的第二个输入图像或金字塔
//prevPts :需要找到流的2D点的矢量(vector of 2D points for which the flow needs to be found;);点坐标必须是单精度浮点数。
//nextPts :输出二维点的矢量(具有单精度浮点坐标),包含第二图像中输入特征的计算新位置;当传递OPTFLOW_USE_INITIAL_FLOW标志时,向量必须与输入中的大小相同。
//status :输出状态向量(无符号字符);如果找到相应特征的流,则向量的每个元素设置为1,否则设置为0。
//err :输出误差的矢量; 向量的每个元素都设置为相应特征的误差,误差度量的类型可以在flags参数中设置; 如果未找到流,则未定义误差(使用status参数查找此类情况)。
//winSize :每个金字塔等级的搜索窗口的winSize大小。
//maxLevel :基于0的最大金字塔等级数;如果设置为0,则不使用金字塔(单级),如果设置为1,则使用两个级别,依此类推;如果将金字塔传递给输入,那么算法将使用与金字塔一样多的级别,但不超过maxLevel。
//criteria :参数,指定迭代搜索算法的终止条件(在指定的最大迭代次数criteria.maxCount之后或当搜索窗口移动小于criteria.epsilon时)。
//flags :操作标志:
//OPTFLOW_USE_INITIAL_FLOW使用初始估计,存储在nextPts中;如果未设置标志,则将prevPts复制到nextPts并将其视为初始估计。
//OPTFLOW_LK_GET_MIN_EIGENVALS使用最小特征值作为误差测量(参见minEigThreshold描述);如果没有设置标志,则将原稿周围的色块和移动点之间的L1距离除以窗口中的像素数,用作误差测量。
//minEigThreshold :算法计算光流方程的2x2正常矩阵的最小特征值,除以窗口中的像素数;如果此值小于minEigThreshold,则过滤掉相应的功能并且不处理其流程,因此它允许删除坏点并获得性能提升。
//该函数实现了金字塔中Lucas-Kanade光流的稀疏迭代版本

源码如下:

//
// Created by nnz on 2020/11/6.
//
#include <iostream>
#include <opencv2/opencv.hpp>
#include <string>
#include <chrono>
#include <Eigen/Core>
#include <Eigen/Dense>

using namespace std;
using namespace cv;
using namespace Eigen;

string file_1 = "../LK1.png";  // first image
string file_2 = "../LK2.png";  // second image

int main(int argc,char ** argv)
{
    cout<<"*******************************using opencv*************************"<<endl;

    //读入图片
    Mat img1=imread(file_1,0);
    Mat img2=imread(file_2,0);
    //获取keypoints
    //定义容器存放keypoints
    vector<KeyPoint> kp1;
    //cv::FAST(img1,keypoints1,40);//这是直接提取Fast角点
    // 1)参数maxCorners:检测到的最大角点数量;
    //(2)参数qualityLevel:输出角点的质量等级,取值范围是 [ 0 , 1 ];如果某个候选点的角点响应值小于(qualityLeve * 最大角点响应值),则该点会被抛弃,相当于判定某候选点为角点的阈值;
    //(3)参数minDistance:两个角点间的最小距离,如果某两个角点间的距离小于minDistance,则会被认为是同一个角点;
    //(4)参数mask:如果有该掩膜,则只计算掩膜内的角点;
    //(5)参数blockSize:计算角点响应值的邻域大小,默认值为3;如果输入图像的分辨率比较大,可以选择比较大的blockSize;
    //(6)参数useHarrisDector:布尔类型,如果为true则使用Harris角点检测;默认为false,使用shi-tomas角点检测算法;
    //(7)参数k:只在使用Harris角点检测时才生效,也就是计算角点响应值时的系数k。
    //建立GFTT角点探测器
    Ptr<GFTTDetector> detector=GFTTDetector::create(500,0.01,20);
    //算出图1的keypoints-kp1
    detector->detect(img1,kp1);
    //在图2中追踪图1的keypoints

    vector<Point2f> pt1, pt2;//要把Keypoint类型转为Point2f
    for (auto &kp: kp1) pt1.push_back(kp.pt);
    vector<uchar> status;
    vector<float> error;
    cv::calcOpticalFlowPyrLK(img1,img2,pt1,pt2,status,error);
    Mat img2_CV;
    cv::cvtColor(img2, img2_CV, CV_GRAY2BGR);
    for (int i = 0; i < pt2.size(); i++)
    {
        if (status[i])//status[i]表示在图2中是否跟踪到图1中对应的点
        {
            cv::circle(img2_CV, pt2[i], 2, cv::Scalar(100, 250, 50), 2);//在图2中用圆标出跟踪到的点
            cv::line(img2_CV, pt1[i], pt2[i], cv::Scalar(100, 250, 50));//
        }
    }

    cv::imshow("tracked by opencv", img2_CV);
    cv::waitKey(0);

    cout<<"*******************************using opencv*************************"<<endl;
    return 0;
}
/*void cv::calcOpticalFlowPyrLK	(
        InputArray 	prevImg,
        InputArray 	nextImg,
        InputArray 	prevPts,
        InputOutputArray 	nextPts,
        OutputArray 	status,
        OutputArray 	err,
        Size 	winSize = Size(21, 21),
        int 	maxLevel = 3,
        TermCriteria 	criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
        int 	flags = 0,
        double 	minEigThreshold = 1e-4
)	*/
//使用具有金字塔的迭代Lucas-Kanade方法计算稀疏特征集的光流。
//参数:
//
//prevImg :buildOpticalFlowPyramid构造的第一个8位输入图像或金字塔。
//nextImg :与prevImg相同大小和相同类型的第二个输入图像或金字塔
//prevPts :需要找到流的2D点的矢量(vector of 2D points for which the flow needs to be found;);点坐标必须是单精度浮点数。
//nextPts :输出二维点的矢量(具有单精度浮点坐标),包含第二图像中输入特征的计算新位置;当传递OPTFLOW_USE_INITIAL_FLOW标志时,向量必须与输入中的大小相同。
//status :输出状态向量(无符号字符);如果找到相应特征的流,则向量的每个元素设置为1,否则设置为0。
//err :输出误差的矢量; 向量的每个元素都设置为相应特征的误差,误差度量的类型可以在flags参数中设置; 如果未找到流,则未定义误差(使用status参数查找此类情况)。
//winSize :每个金字塔等级的搜索窗口的winSize大小。
//maxLevel :基于0的最大金字塔等级数;如果设置为0,则不使用金字塔(单级),如果设置为1,则使用两个级别,依此类推;如果将金字塔传递给输入,那么算法将使用与金字塔一样多的级别,但不超过maxLevel。
//criteria :参数,指定迭代搜索算法的终止条件(在指定的最大迭代次数criteria.maxCount之后或当搜索窗口移动小于criteria.epsilon时)。
//flags :操作标志:
//OPTFLOW_USE_INITIAL_FLOW使用初始估计,存储在nextPts中;如果未设置标志,则将prevPts复制到nextPts并将其视为初始估计。
//OPTFLOW_LK_GET_MIN_EIGENVALS使用最小特征值作为误差测量(参见minEigThreshold描述);如果没有设置标志,则将原稿周围的色块和移动点之间的L1距离除以窗口中的像素数,用作误差测量。
//minEigThreshold :算法计算光流方程的2x2正常矩阵的最小特征值,除以窗口中的像素数;如果此值小于minEigThreshold,则过滤掉相应的功能并且不处理其流程,因此它允许删除坏点并获得性能提升。
//该函数实现了金字塔中Lucas-Kanade光流的稀疏迭代版本

/*
功能:绘制连接两个点的线段
        函数原型:
void cvLine( CvArr img, CvPoint pt1, CvPoint pt2, CvScalar color, int thickness=1, int line_type=8, int shift=0 );*

参数说明:
img 图像。
pt1 线段的第一个端点。
pt2 线段的第二个端点。
color 线段的颜色。
thickness 线段的粗细程度。
line_type 线段的类型。
8 (or 0) - 8-connected line(8邻接)连接 线。
4 - 4-connected line(4邻接)连接线。
CV_AA - antialiased 线条。shift 坐标点的小数点位数。*/

/*
cvCircle(CvArr* img, CvPoint center, int radius, CvScalar color, int thickness=1, int lineType=8, int shift=0)

img为图像指针,单通道多通道都行,不须要特殊要求

        center为画圆的圆心坐标

radius为圆的半径

        color为设定圆的颜色,比方用CV_RGB(255, 0,0)设置为红色

        thickness为设置圆线条的粗细,值越大则线条越粗,为负数则是填充效果*/

运行结果如下:
在这里插入图片描述

二、手写单层光流追踪-高斯牛顿-非线性优化

源码如下:

//
// Created by nnz on 2020/11/6.
//

/*理一下计算光流的的步骤
 以关键点为中心 从上下左右扩展一个4*4的小块 假设小块的移动是一样的,所以把这个块里的关键点一起高斯牛顿
利用非线性 高斯牛顿 来优化光流
自变量是 dx dy 也就是在图2中把图1关键点的位置在水平上加dx 在纵向加dy
 e=I(x,y)(图1)-I(x+dx,y+dy)(图2)
 cost=e*e
 雅克比 J矩阵则是 I在水平方向上的梯度 和 I在纵向上的梯度 构成(图2)
 H=J*J^T
 b=-e*J
 Hdx=b
 */

//单层光流的原理
//把原始图片的点都算一遍(用块的形式)


/*static Ptr<GFTTDetector> create( int maxCorners=1000, double qualityLevel=0.01, double minDistance=1,
                                 int blockSize=3, bool useHarrisDetector=false, double k=0.04 );*/

// 1)参数maxCorners:检测到的最大角点数量;
//(2)参数qualityLevel:输出角点的质量等级,取值范围是 [ 0 , 1 ];如果某个候选点的角点响应值小于(qualityLeve * 最大角点响应值),则该点会被抛弃,相当于判定某候选点为角点的阈值;
//(3)参数minDistance:两个角点间的最小距离,如果某两个角点间的距离小于minDistance,则会被认为是同一个角点;
//(4)参数mask:如果有该掩膜,则只计算掩膜内的角点;
//(5)参数blockSize:计算角点响应值的邻域大小,默认值为3;如果输入图像的分辨率比较大,可以选择比较大的blockSize;
//(6)参数useHarrisDector:布尔类型,如果为true则使用Harris角点检测;默认为false,使用shi-tomas角点检测算法;
//(7)参数k:只在使用Harris角点检测时才生效,也就是计算角点响应值时的系数k。
#include <iostream>
#include <opencv2/opencv.hpp>
#include <string>
#include <chrono>
#include <Eigen/Core>
#include <Eigen/Dense>

using namespace std;
using namespace cv;
using namespace Eigen;

string file_1 = "../LK1.png";  // first image
string file_2 = "../LK2.png";  // second image
//定义光流追踪的类
class OpticalFlowTracker {
public:
    OpticalFlowTracker(
            const Mat &img1_,
            const Mat &img2_,
            const vector<KeyPoint> &kp1_,
            vector<KeyPoint> &kp2_,
            vector<bool> &success_,
            bool inverse_ = true, bool has_initial_ = false) :
            img1(img1_), img2(img2_), kp1(kp1_), kp2(kp2_), success(success_), inverse(inverse_),
            has_initial(has_initial_) {} //初始化

    void calculateOpticalFlow(const Range &range);//这是计算光流的函数

private://属性
    const Mat &img1;
    const Mat &img2;
    const vector<KeyPoint> &kp1;
    vector<KeyPoint> &kp2;
    vector<bool> &success;
    bool inverse = true;
    bool has_initial = false;
};



//单层光流
void OpticalFlowSingleLevel(
        const Mat &img1,
        const Mat &img2,
        const vector<KeyPoint> &kp1,
        vector<KeyPoint> &kp2,
        vector<bool> &success,
        bool inverse = false,
        bool has_initial_guess = false
);

//计算灰度
inline float GetPixelValue(const cv::Mat &img, float x, float y) {
    // boundary check
    if (x < 0) x = 0;
    if (y < 0) y = 0;
    if (x >= img.cols) x = img.cols - 1;
    if (y >= img.rows) y = img.rows - 1;
    uchar *data = &img.data[int(y) * img.step + int(x)];
    float xx = x - floor(x);
    float yy = y - floor(y);
    return float(
            (1 - xx) * (1 - yy) * data[0] +
            xx * (1 - yy) * data[1] +
            (1 - xx) * yy * data[img.step] +
            xx * yy * data[img.step + 1]
    );
}

int main(int argc,char ** argv)
{
    cout<<"*******************************using singl-LK_by_gn*************************"<<endl;

    //读入图片
    Mat img1=imread(file_1,0);
    Mat img2=imread(file_2,0);
    //获取keypoints
    //定义容器存放keypoints
    vector<KeyPoint> kp1;
    //cv::FAST(img1,keypoints1,40);//这是直接提取Fast角点

    //建立GFTT角点探测器
    Ptr<GFTTDetector> detector=GFTTDetector::create(500,0.01,20);
    //算出图1的keypoints-kp1
    detector->detect(img1,kp1);
    //在图2中追踪图1的keypoints


    vector<KeyPoint> kp2_single;
    vector<bool> success_single;
    OpticalFlowSingleLevel(img1, img2, kp1, kp2_single, success_single);

    Mat img2_single;
    cv::cvtColor(img2, img2_single, CV_GRAY2BGR);
    for (int i = 0; i < kp2_single.size(); i++) {
        if (success_single[i]) {
            cv::circle(img2_single, kp2_single[i].pt, 2, cv::Scalar(0, 250, 0), 2);
            cv::line(img2_single, kp1[i].pt, kp2_single[i].pt, cv::Scalar(0, 250, 0));
        }
    }

    cv::imshow("tracked by single-gn ", img2_single);
    cv::waitKey(0);

    cout<<"*******************************using singl-LK_by_gn*************************"<<endl;
    return 0;
}


void OpticalFlowSingleLevel(
        const Mat &img1,
        const Mat &img2,
        const vector<KeyPoint> &kp1,
        vector<KeyPoint> &kp2,
        vector<bool> &success,
        bool inverse ,
        bool has_initial
)
{
    kp2.resize(kp1.size());//让kp2的大小和 kp1一样
    success.resize(kp1.size());//每一个追踪成功与否的标志
    OpticalFlowTracker tracker(img1,img2,kp1,kp2,success,inverse,has_initial);//初始化 构建光流追踪类
    //并行循环  std还没有学到这个,看不太懂,暂且当做计算光流函数调用?
    parallel_for_(Range(0,kp1.size()),
                  std::bind(&OpticalFlowTracker::calculateOpticalFlow,&tracker,placeholders::_1));

}
//类外实现成员函数
void OpticalFlowTracker::calculateOpticalFlow(const Range &range)
{
    //
    int half_patch_size=4;//4*4的块的边
    int iterations=10;//迭代次数
    for(size_t i=range.start;i<range.end;i++)
    {
        auto kp=kp1[i];//用kp存图1中的关键点
        double  dx=0,dy=0;//待优化系数初始值
        if(has_initial)//待优化的系数如果需要初始化  在刚开始的时候不可能进行下面的操作,因为kp2这时候没有点
        {
            dx=kp2[i].pt.x-kp.pt.x;
            dy=kp2[i].pt.y-kp.pt.y;
        }
        double cost = 0, lastCost = 0;
        bool succ = true; // indicate if this point succeeded
        //进行高斯牛顿的迭代
        Eigen::Matrix2d H = Eigen::Matrix2d::Zero();    // hessian
        Eigen::Vector2d b = Eigen::Vector2d::Zero();    // bias
        Eigen::Vector2d J;  // jacobian
        for(int it=0;it<iterations;it++)
        {
            if(inverse==false)//默认 inverse=false
            {
                //对 H ,b 进行初始化
                H = Eigen::Matrix2d::Zero();
                b = Eigen::Vector2d::Zero();
            }
            else
            {
                //只对b进行初始化
                b = Eigen::Vector2d::Zero();
            }

            cost=0;//每次迭代cost都要先置为0

            //计算 cost 和雅克比 J
            //4*4的块,假设在这个块里的关键点的移动都是一样的,所以直接对这个4*4的块进行高斯牛顿
            for (int x = -half_patch_size; x < half_patch_size; x++)
            {
                for (int y = -half_patch_size; y < half_patch_size; y++)
                {   //计算e=I(x,y)(图1)-I(x+dx,y+dy)(图2)
                    double error = GetPixelValue(img1, kp.pt.x + x, kp.pt.y + y) -
                                   GetPixelValue(img2, kp.pt.x + x + dx, kp.pt.y + y + dy);;
                    if(inverse==false)
                    {   //这里乘了一个-1 ,表示梯度是减小的
                        J = -1.0 * Eigen::Vector2d(
                                0.5 * (GetPixelValue(img2, kp.pt.x + dx + x + 1, kp.pt.y + dy + y) -
                                       GetPixelValue(img2, kp.pt.x + dx + x - 1, kp.pt.y + dy + y)),
                                0.5 * (GetPixelValue(img2, kp.pt.x + dx + x, kp.pt.y + dy + y + 1) -
                                       GetPixelValue(img2, kp.pt.x + dx + x, kp.pt.y + dy + y - 1))
                        );

                    }
                    else if(i==0)//如果是第一次迭代,雅克比矩阵用图1的点来算
                    {
                        // in inverse mode, J keeps same for all iterations
                        // NOTE this J does not change when dx, dy is updated, so we can store it and only compute error
                        J = -1.0 * Eigen::Vector2d(
                                0.5 * (GetPixelValue(img1, kp.pt.x + x + 1, kp.pt.y + y) -
                                       GetPixelValue(img1, kp.pt.x + x - 1, kp.pt.y + y)),
                                0.5 * (GetPixelValue(img1, kp.pt.x + x, kp.pt.y + y + 1) -
                                       GetPixelValue(img1, kp.pt.x + x, kp.pt.y + y - 1))
                        );
                    }
                    // compute H, b and set cost;  这里应该就很熟悉了  见 SLAM十四讲p129页
                    b += -error * J;
                    cost += error * error;
                    if (inverse == false || it == 0)
                    {
                        // also update H
                        H += J * J.transpose();
                    }
                }//一次迭代的高斯牛顿相关矩阵计算结束



            }
            //计算增量 update
            Eigen::Vector2d update = H.ldlt().solve(b);
            if (std::isnan(update[0]))
            {//判断增量有没有用
                // sometimes occurred when we have a black or white patch and H is irreversible
                cout << "update is nan" << endl;
                succ = false;//表示追踪失败
                break;
            }
            if (it > 0 && cost > lastCost)
            {//满足条件就停止迭代
                break;
            }
            //更新优化系数
            dx+=update[0];
            dy+=update[1];
            lastCost=cost;
            succ=true;//这个快跟踪成功
            if (update.norm() < 1e-2)
            {// 如果增量比较小了,就停止迭代
                // converge
                break;
            }

        }
        //结束迭代
        success[i]=succ;
        kp2[i].pt= kp.pt + Point2f(dx, dy);
    }//所有的点迭代完
}

运行结果如下:
在这里插入图片描述

三、手写多层光流-高斯牛顿-非线性优化

源码如下:

//
// Created by nnz on 2020/11/7.
//
//
// Created by nnz on 2020/11/6.
//

/*理一下计算光流的的步骤
 以关键点为中心 从上下左右扩展一个4*4的小块 假设小块的移动是一样的,所以把这个块里的关键点一起高斯牛顿
利用非线性 高斯牛顿 来优化光流
自变量是 dx dy 也就是在图2中把图1关键点的位置在水平上加dx 在纵向加dy
 e=I(x,y)(图1)-I(x+dx,y+dy)(图2)
 cost=e*e
 雅克比 J矩阵则是 I在水平方向上的梯度 和 I在纵向上的梯度 构成(图2)
 H=J*J^T
 b=-e*J
 Hdx=b
 */

//单层光流的原理
//把原始图片的点都算一遍(用块的形式)


/*static Ptr<GFTTDetector> create( int maxCorners=1000, double qualityLevel=0.01, double minDistance=1,
                                 int blockSize=3, bool useHarrisDetector=false, double k=0.04 );*/

// 1)参数maxCorners:检测到的最大角点数量;
//(2)参数qualityLevel:输出角点的质量等级,取值范围是 [ 0 , 1 ];如果某个候选点的角点响应值小于(qualityLeve * 最大角点响应值),则该点会被抛弃,相当于判定某候选点为角点的阈值;
//(3)参数minDistance:两个角点间的最小距离,如果某两个角点间的距离小于minDistance,则会被认为是同一个角点;
//(4)参数mask:如果有该掩膜,则只计算掩膜内的角点;
//(5)参数blockSize:计算角点响应值的邻域大小,默认值为3;如果输入图像的分辨率比较大,可以选择比较大的blockSize;
//(6)参数useHarrisDector:布尔类型,如果为true则使用Harris角点检测;默认为false,使用shi-tomas角点检测算法;
//(7)参数k:只在使用Harris角点检测时才生效,也就是计算角点响应值时的系数k。
#include <iostream>
#include <opencv2/opencv.hpp>
#include <string>
#include <chrono>
#include <Eigen/Core>
#include <Eigen/Dense>

using namespace std;
using namespace cv;
using namespace Eigen;

string file_1 = "../LK1.png";  // first image
string file_2 = "../LK2.png";  // second image
//定义光流追踪的类
class OpticalFlowTracker {
public:
    OpticalFlowTracker(
            const Mat &img1_,
            const Mat &img2_,
            const vector<KeyPoint> &kp1_,
            vector<KeyPoint> &kp2_,
            vector<bool> &success_,
            bool inverse_ = true, bool has_initial_ = false) :
            img1(img1_), img2(img2_), kp1(kp1_), kp2(kp2_), success(success_), inverse(inverse_),
            has_initial(has_initial_) {} //初始化

    void calculateOpticalFlow(const Range &range);//这是计算光流的函数

private://属性
    const Mat &img1;
    const Mat &img2;
    const vector<KeyPoint> &kp1;
    vector<KeyPoint> &kp2;
    vector<bool> &success;
    bool inverse = true;
    bool has_initial = false;
};



//单层光流
void OpticalFlowSingleLevel(
        const Mat &img1,
        const Mat &img2,
        const vector<KeyPoint> &kp1,
        vector<KeyPoint> &kp2,
        vector<bool> &success,//追踪成功与否的标志
        bool inverse = false,
        bool has_initial_guess = false
);

//多层光流
void OpticalFlowMultiLevel(
        const Mat &img1,
        const Mat &img2,
        const vector<KeyPoint> &kp1,
        vector<KeyPoint> &kp2,
        vector<bool> &success,
        bool inverse=false);

//计算灰度
inline float GetPixelValue(const cv::Mat &img, float x, float y) {
    // boundary check
    if (x < 0) x = 0;
    if (y < 0) y = 0;
    if (x >= img.cols) x = img.cols - 1;
    if (y >= img.rows) y = img.rows - 1;
    uchar *data = &img.data[int(y) * img.step + int(x)];//step[0]是矩阵中一行元素的字节数。 step[1]是矩阵中一个元素的字节数
    float xx = x - floor(x);//floor是向下 取整// 取小数部分
    // 如: floor(3.14) = 3.0
    //floor(9.999999) = 9.0
    //floor(-3.14) = -4.0
    //floor(-9.999999) = -10
    float yy = y - floor(y);//取小数部分
    return float(
            (1 - xx) * (1 - yy) * data[0] +    //data:  uchar类型的指针,指向Mat数据矩阵的首地址。可以理解为标示一个房屋的门牌号

            xx * (1 - yy) * data[1] +
            (1 - xx) * yy * data[img.step] +
            xx * yy * data[img.step + 1]
    );
}

int main(int argc,char ** argv)
{
    cout<<"*******************************using mult-LK_by_gn*************************"<<endl;

    //读入图片
    Mat img1=imread(file_1,0);
    Mat img2=imread(file_2,0);
    //获取keypoints
    //定义容器存放keypoints
    vector<KeyPoint> kp1;
    //cv::FAST(img1,keypoints1,40);//这是直接提取Fast角点

    //建立GFTT角点探测器
    Ptr<GFTTDetector> detector=GFTTDetector::create(500,0.01,20);
    //算出图1的keypoints-kp1
    detector->detect(img1,kp1);
    //在图2中追踪图1的keypoints


    vector<KeyPoint> kp2_mult;
    vector<bool> success_mult;
    OpticalFlowMultiLevel(img1,img2,kp1,kp2_mult,success_mult,true);

    Mat img2_single;
    cv::cvtColor(img2, img2_single, CV_GRAY2BGR);
    for (int i = 0; i < kp2_mult.size(); i++) {
        if (success_mult[i]) {
            cv::circle(img2_single, kp2_mult[i].pt, 2, cv::Scalar(0, 250, 0), 2);
            cv::line(img2_single, kp1[i].pt, kp2_mult[i].pt, cv::Scalar(0, 250, 0));
        }
    }

    cv::imshow("tracked by mult-gn ", img2_single);
    cv::waitKey(0);

    cout<<"*******************************using mult-LK_by_gn*************************"<<endl;
    return 0;
}

//类外实现成员函数
void OpticalFlowTracker::calculateOpticalFlow(const Range &range)
{
    //
    int half_patch_size=4;//4*4的块的边
    int iterations=10;//迭代次数
    for(size_t i=range.start;i<range.end;i++)
    {
        auto kp=kp1[i];//用kp存图1中的关键点
        double  dx=0,dy=0;//待优化系数初始值
        if(has_initial)//待优化的系数如果需要初始化  在刚开始的时候不可能进行下面的操作,因为kp2这时候没有点
        {
            dx=kp2[i].pt.x-kp.pt.x;
            dy=kp2[i].pt.y-kp.pt.y;
        }
        double cost = 0, lastCost = 0;
        bool succ = true; // indicate if this point succeeded
        //进行高斯牛顿的迭代
        Eigen::Matrix2d H = Eigen::Matrix2d::Zero();    // hessian
        Eigen::Vector2d b = Eigen::Vector2d::Zero();    // bias
        Eigen::Vector2d J;  // jacobian
        for(int it=0;it<iterations;it++)
        {
            if(inverse==false)//默认 inverse=false
            {
                //对 H ,b 进行初始化
                H = Eigen::Matrix2d::Zero();
                b = Eigen::Vector2d::Zero();
            }
            else
            {
                //只对b进行初始化
                b = Eigen::Vector2d::Zero();
            }

            cost=0;//每次迭代cost都要先置为0

            //计算 cost 和雅克比 J
            //4*4的块,假设在这个块里的关键点的移动都是一样的,所以直接对这个4*4的块进行高斯牛顿
            for (int x = -half_patch_size; x < half_patch_size; x++)
            {
                for (int y = -half_patch_size; y < half_patch_size; y++)
                {   //计算e=I(x,y)(图1)-I(x+dx,y+dy)(图2)
                    double error = GetPixelValue(img1, kp.pt.x + x, kp.pt.y + y) -
                                   GetPixelValue(img2, kp.pt.x + x + dx, kp.pt.y + y + dy);;
                    if(inverse==false)
                    {   //这里乘了一个-1 ,表示梯度是减小的
                        J = -1.0 * Eigen::Vector2d(
                                0.5 * (GetPixelValue(img2, kp.pt.x + dx + x + 1, kp.pt.y + dy + y) -
                                       GetPixelValue(img2, kp.pt.x + dx + x - 1, kp.pt.y + dy + y)),
                                0.5 * (GetPixelValue(img2, kp.pt.x + dx + x, kp.pt.y + dy + y + 1) -
                                       GetPixelValue(img2, kp.pt.x + dx + x, kp.pt.y + dy + y - 1))
                        );

                    }
                    else if(it==0)//如果是第一次迭代,雅克比矩阵用图1的点来算
                    {
                        // in inverse mode, J keeps same for all iterations
                        // NOTE this J does not change when dx, dy is updated, so we can store it and only compute error
                        J = -1.0 * Eigen::Vector2d(
                                0.5 * (GetPixelValue(img1, kp.pt.x + x + 1, kp.pt.y + y) -
                                       GetPixelValue(img1, kp.pt.x + x - 1, kp.pt.y + y)),
                                0.5 * (GetPixelValue(img1, kp.pt.x + x, kp.pt.y + y + 1) -
                                       GetPixelValue(img1, kp.pt.x + x, kp.pt.y + y - 1))
                        );
                    }
                    // compute H, b and set cost;  这里应该就很熟悉了  见 SLAM十四讲p129页
                    b += -error * J;
                    cost += error * error;
                    if (inverse == false || it == 0)
                    {
                        // also update H
                        H += J * J.transpose();
                    }
                }//一次迭代的高斯牛顿相关矩阵计算结束



            }
            //计算增量 update
            Eigen::Vector2d update = H.ldlt().solve(b);
            if (std::isnan(update[0]))
            {//判断增量有没有用
                // sometimes occurred when we have a black or white patch and H is irreversible
                cout << "update is nan" << endl;
                succ = false;//表示追踪失败
                break;
            }
            if (it > 0 && cost > lastCost)
            {//满足条件就停止迭代
                break;
            }
            //更新优化系数
            dx+=update[0];
            dy+=update[1];
            lastCost=cost;
            succ=true;//这个快跟踪成功
            if (update.norm() < 1e-2)
            {// 如果增量比较小了,就停止迭代
                // converge
                break;
            }

        }
        //结束迭代
        success[i]=succ;
        kp2[i].pt= kp.pt + Point2f(dx, dy);
    }//所有的点迭代完
}



//单层光流
void OpticalFlowSingleLevel(
        const Mat &img1,
        const Mat &img2,
        const vector<KeyPoint> &kp1,
        vector<KeyPoint> &kp2,
        vector<bool> &success,
        bool inverse ,
        bool has_initial
)
{
    kp2.resize(kp1.size());//让kp2的大小和 kp1一样  因为多级光流有让kp2初始化 因此得让kp2有和 kp1一样的大小
    success.resize(kp1.size());//每一个追踪成功与否的标志
    OpticalFlowTracker tracker(img1,img2,kp1,kp2,success,inverse,has_initial);//初始化 构建光流追踪类
    //并行循环  std还没有学到这个,看不太懂,暂且当做计算光流函数调用?
    parallel_for_(Range(0,kp1.size()),
                  std::bind(&OpticalFlowTracker::calculateOpticalFlow,&tracker,placeholders::_1));

}


//多层光流
void OpticalFlowMultiLevel(
        const Mat &img1,
        const Mat &img2,
        const vector<KeyPoint> &kp1,
        vector<KeyPoint> &kp2,
        vector<bool> &success,
        bool inverse){

    // parameters
    int pyramids = 4;//金字塔的层数 也就是要降采样四次
    double pyramid_scale = 0.5;//缩放比例
    double scales[] = {1.0, 0.5, 0.25, 0.125};//分别是 从原图缩放到1/8

    // create pyramids
    chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
    vector<Mat> pyr1, pyr2; // image pyramids 容器,分别存放 不同缩放比例的图片
    //利用循环得到四层不同比例的图片
    for (int i = 0; i < pyramids; i++) {
        if (i == 0) {
            pyr1.push_back(img1);//pyr1[0] 和 pyr2[0] 放的分别是图1和图2的原图
            pyr2.push_back(img2);
        } else {
            Mat img1_pyr, img2_pyr;//降采样后临时存放在 img1_pyr, img2_pyr
            //利用resize函数,调整 重置img1_pyr, img2_pyr的尺寸,
            cv::resize(pyr1[i - 1], img1_pyr,
                       cv::Size(pyr1[i - 1].cols * pyramid_scale, pyr1[i - 1].rows * pyramid_scale));
            cv::resize(pyr2[i - 1], img2_pyr,
                       cv::Size(pyr2[i - 1].cols * pyramid_scale, pyr2[i - 1].rows * pyramid_scale));
            pyr1.push_back(img1_pyr);
            pyr2.push_back(img2_pyr);
        }
    }
    //完成图像的缩放
    chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
    auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
    cout << "build pyramid time: " << time_used.count() << endl;
//接下来缩放关键点咯
    // coarse-to-fine LK tracking in pyramids
    vector<KeyPoint> kp1_pyr, kp2_pyr;
    //这个循环得到的是最小的那一层缩放后的点
    for (auto &kp:kp1) {
        auto kp_top = kp;
        kp_top.pt *= scales[pyramids - 1];
        kp1_pyr.push_back(kp_top);
        kp2_pyr.push_back(kp_top);
    }
    //循环从最小的那一层开始,然后慢慢恢复到原始图片
    for (int level = pyramids - 1; level >= 0; level--)
    {
        // from coarse to fine
        success.clear();
        t1 = chrono::steady_clock::now();
        //这里应该就可以知道 has_initial是什么了,就是看图2中的点有没有初始化呗
        OpticalFlowSingleLevel(pyr1[level], pyr2[level], kp1_pyr, kp2_pyr, success, inverse, true);
        t2 = chrono::steady_clock::now();
        auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
        cout << "track pyr " << level << " cost time: " << time_used.count() << endl;

        if (level > 0) {
            for (auto &kp: kp1_pyr)
                kp.pt /= pyramid_scale;//这里是 点*2 相当于把点放大为上一层的点(图1中的点)
            for (auto &kp: kp2_pyr)
                kp.pt /= pyramid_scale;//这里是 点*2 相当于把点放大为上一层的点(图2中预测的点)
        }
    }
    //把四层都走完了
    // 最后再把走完四次降采样的点返回到kp2


    for (auto &kp: kp2_pyr)
        kp2.push_back(kp);
}


运行结果如下:
在这里插入图片描述

四、利用直接法进行位姿估计-高斯牛顿-非线性优化

源码如下:

//图片是从left 到1 left到2   、、、、、、left 到5  其中通过视差图得到深度信息
#include <opencv2/opencv.hpp>
#include <sophus/se3.hpp>
#include <boost/format.hpp>
#include <pangolin/pangolin.h>

using namespace std;

typedef vector<Eigen::Vector2d, Eigen::aligned_allocator<Eigen::Vector2d>> VecVector2d;

// Camera intrinsics
double fx = 718.856, fy = 718.856, cx = 607.1928, cy = 185.2157;//相机内参
// baseline
double baseline = 0.573;
// paths
string left_file = "./left.png";
string disparity_file = "./disparity.png";
boost::format fmt_others("./%06d.png");    // other files

// useful typedefs
typedef Eigen::Matrix<double, 6, 6> Matrix6d;
typedef Eigen::Matrix<double, 2, 6> Matrix26d;
typedef Eigen::Matrix<double, 6, 1> Vector6d;

/// class for accumulator jacobians in parallel
class JacobianAccumulator {
public:
    JacobianAccumulator(
            const cv::Mat &img1_,
            const cv::Mat &img2_,
            const VecVector2d &px_ref_,
            const vector<double> depth_ref_,
            Sophus::SE3d &T21_) :
            img1(img1_), img2(img2_), px_ref(px_ref_), depth_ref(depth_ref_), T21(T21_) {
        projection = VecVector2d(px_ref.size(), Eigen::Vector2d(0, 0));
    }

    /// accumulate jacobians in a range
    void accumulate_jacobian(const cv::Range &range);

    /// get hessian matrix
    Matrix6d hessian() const { return H; }

    /// get bias
    Vector6d bias() const { return b; }

    /// get total cost
    double cost_func() const { return cost; }

    /// get projected points
    VecVector2d projected_points() const { return projection; }

    /// reset h, b, cost to zero
    void reset() {
        H = Matrix6d::Zero();
        b = Vector6d::Zero();
        cost = 0;
    }

private:
    const cv::Mat &img1;
    const cv::Mat &img2;
    const VecVector2d &px_ref;//左图的像素点
    const vector<double> depth_ref;//左图的像素点对应的深度
    Sophus::SE3d &T21;//从左图变换到友图的变换矩阵
    VecVector2d projection; // projected points

    std::mutex hessian_mutex;//上锁
    //    初始化 H b
    Matrix6d H = Matrix6d::Zero();
    Vector6d b = Vector6d::Zero();
    double cost = 0;
};

/**
 * pose estimation using direct method
 * @param img1
 * @param img2
 * @param px_ref
 * @param depth_ref
 * @param T21
 */
void DirectPoseEstimationMultiLayer(
        const cv::Mat &img1,
        const cv::Mat &img2,
        const VecVector2d &px_ref,
        const vector<double> depth_ref,
        Sophus::SE3d &T21
);

/**
 * pose estimation using direct method
 * @param img1
 * @param img2
 * @param px_ref
 * @param depth_ref
 * @param T21
 */
void DirectPoseEstimationSingleLayer(
        const cv::Mat &img1,
        const cv::Mat &img2,
        const VecVector2d &px_ref,
        const vector<double> depth_ref,
        Sophus::SE3d &T21
);

// bilinear interpolation
inline float GetPixelValue(const cv::Mat &img, float x, float y) {
    // boundary check
    if (x < 0) x = 0;
    if (y < 0) y = 0;
    if (x >= img.cols) x = img.cols - 1;
    if (y >= img.rows) y = img.rows - 1;
    uchar *data = &img.data[int(y) * img.step + int(x)];
    float xx = x - floor(x);
    float yy = y - floor(y);
    return float(
            (1 - xx) * (1 - yy) * data[0] +
            xx * (1 - yy) * data[1] +
            (1 - xx) * yy * data[img.step] +
            xx * yy * data[img.step + 1]
    );
}

int main(int argc, char **argv) {

    cv::Mat left_img = cv::imread(left_file, 0);
    cv::Mat disparity_img = cv::imread(disparity_file, 0);

    // let's randomly pick pixels in the first image and generate some 3d points in the first image's frame
    cv::RNG rng;
    int nPoints = 2000;
    int boarder = 20;
    VecVector2d pixels_ref;
    vector<double> depth_ref;

    // generate pixels in ref and load depth data
    //利用opencv的随机产生器,我们在边界以内随机产生2000个点
    for (int i = 0; i < nPoints; i++) {
        int x = rng.uniform(boarder, left_img.cols - boarder);  // don't pick pixels close to boarder
        int y = rng.uniform(boarder, left_img.rows - boarder);  // don't pick pixels close to boarder
        int disparity = disparity_img.at<uchar>(y, x);
        double depth = fx * baseline / disparity; // you know this is disparity to depth  这是利用视差求深度
        //公式就是fx * baseline / disparity  baseline是基线,disparity是视差
        depth_ref.push_back(depth); //得到左图像素点的深度信息
        pixels_ref.push_back(Eigen::Vector2d(x, y));//得到左图中随机产生的像素点 放在pixels_ref中
    }

    // estimates 01~05.png's pose using this information
    Sophus::SE3d T_cur_ref;
//利用直接法求出左图与5个图的位姿变幻
    for (int i = 1; i < 6; i++) {  // 1~10
        cv::Mat img = cv::imread((fmt_others % i).str(), 0);
        // try single layer by uncomment this line
        // DirectPoseEstimationSingleLayer(left_img, img, pixels_ref, depth_ref, T_cur_ref);
        DirectPoseEstimationMultiLayer(left_img, img, pixels_ref, depth_ref, T_cur_ref);
    }
    return 0;
}

void DirectPoseEstimationSingleLayer(
        const cv::Mat &img1,
        const cv::Mat &img2,
        const VecVector2d &px_ref,
        const vector<double> depth_ref,
        Sophus::SE3d &T21) {

    const int iterations = 10;
    double cost = 0, lastCost = 0;
    auto t1 = chrono::steady_clock::now();
    JacobianAccumulator jaco_accu(img1, img2, px_ref, depth_ref, T21);//定义雅克比类,调用有参构造初始化jaco_accu
    //迭代
    for (int iter = 0; iter < iterations; iter++)
    {
        // H = Matrix6d::Zero();b = Vector6d::Zero();cost = 0;
        jaco_accu.reset();//功能就是上面的注释,也就是初始化
        //和手写光流一样,利用并行循环,调用雅克比类里面的计算雅克比的函数
        cv::parallel_for_(cv::Range(0, px_ref.size()),
                          std::bind(&JacobianAccumulator::accumulate_jacobian, &jaco_accu, std::placeholders::_1));
        Matrix6d H = jaco_accu.hessian();//得到H矩阵
        Vector6d b = jaco_accu.bias();//得到b矩阵

        // solve update and put it into estimation
        Vector6d update = H.ldlt().solve(b);//求增量
        T21 = Sophus::SE3d::exp(update) * T21;//更新待优化系数,也就是位姿
        cost = jaco_accu.cost_func();//得到cost

        if (std::isnan(update[0])) //判断更新量是否有效
        {
            // sometimes occurred when we have a black or white patch and H is irreversible
            cout << "update is nan" << endl;
            break;
        }
        if (iter > 0 && cost > lastCost)//满足这个条件停止迭代
        {
            cout << "cost increased: " << cost << ", " << lastCost << endl;
            break;
        }
        if (update.norm() < 1e-3)//如果增量足够小,也停止迭代
        {
            // converge
            break;
        }

        lastCost = cost;
        cout << "iteration: " << iter << ", cost: " << cost << endl;
    }

    cout << "T21 = \n" << T21.matrix() << endl;
    auto t2 = chrono::steady_clock::now();
    auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
    cout << "direct method for single layer: " << time_used.count() << endl;

    // plot the projected pixels here
    cv::Mat img2_show;
    cv::cvtColor(img2, img2_show, CV_GRAY2BGR);
    VecVector2d projection = jaco_accu.projected_points();
    for (size_t i = 0; i < px_ref.size(); ++i) {
        auto p_ref = px_ref[i];
        auto p_cur = projection[i];
        if (p_cur[0] > 0 && p_cur[1] > 0) {
            cv::circle(img2_show, cv::Point2f(p_cur[0], p_cur[1]), 2, cv::Scalar(0, 250, 0), 2);
            cv::line(img2_show, cv::Point2f(p_ref[0], p_ref[1]), cv::Point2f(p_cur[0], p_cur[1]),
                     cv::Scalar(0, 250, 0));
        }
    }
    cv::imshow("current", img2_show);
    cv::waitKey();
}

void JacobianAccumulator::accumulate_jacobian(const cv::Range &range) {

    // parameters
    const int half_patch_size = 1;//这里又是一个边界
    int cnt_good = 0;
    Matrix6d hessian = Matrix6d::Zero();
    Vector6d bias = Vector6d::Zero();
    double cost_tmp = 0;
//遍历所有的点
    for (size_t i = range.start; i < range.end; i++) {

        // compute the projection in the second image
        Eigen::Vector3d point_ref =
                depth_ref[i] * Eigen::Vector3d((px_ref[i][0] - cx) / fx, (px_ref[i][1] - cy) / fy, 1);//左图相机下的坐标
        Eigen::Vector3d point_cur = T21 * point_ref;//得到右图下相机的坐标 里面的额T21是待优化的位姿
        if (point_cur[2] < 0)   // depth invalid
            continue;

        float u = fx * point_cur[0] / point_cur[2] + cx, v = fy * point_cur[1] / point_cur[2] + cy;//得到右图下对应的像素点
        //判断这个点是不是在边界里面
        if (u < half_patch_size || u > img2.cols - half_patch_size || v < half_patch_size ||
            v > img2.rows - half_patch_size)
            continue;

        projection[i] = Eigen::Vector2d(u, v);//把右图的像素点放在 projection[i]里面进行保存
        double X = point_cur[0], Y = point_cur[1], Z = point_cur[2],
                Z2 = Z * Z, Z_inv = 1.0 / Z , Z2_inv = Z_inv * Z_inv;
        cnt_good++;

        // and compute error and jacobian
        //以像素点为中心 上下左右扩展 1 的小块里,这里的原因应该和光流一样,假设这个小块里面的点的移动是一样的
        for (int x = -half_patch_size; x <= half_patch_size; x++)
            for (int y = -half_patch_size; y <= half_patch_size; y++) {

                double error = GetPixelValue(img1, px_ref[i][0] + x, px_ref[i][1] + y) -
                               GetPixelValue(img2, u + x, v + y);
                Matrix26d J_pixel_xi;
                Eigen::Vector2d J_img_pixel;
                //下面的雅克比矩阵是书上的公式  雅克比矩阵分成了两个部分,一个是I对水平方向的梯度 一个是水平方向对位姿(李代数)的梯度

                J_pixel_xi(0, 0) = fx * Z_inv;
                J_pixel_xi(0, 1) = 0;
                J_pixel_xi(0, 2) = -fx * X * Z2_inv;
                J_pixel_xi(0, 3) = -fx * X * Y * Z2_inv;
                J_pixel_xi(0, 4) = fx + fx * X * X * Z2_inv;
                J_pixel_xi(0, 5) = -fx * Y * Z_inv;

                J_pixel_xi(1, 0) = 0;
                J_pixel_xi(1, 1) = fy * Z_inv;
                J_pixel_xi(1, 2) = -fy * Y * Z2_inv;
                J_pixel_xi(1, 3) = -fy - fy * Y * Y * Z2_inv;
                J_pixel_xi(1, 4) = fy * X * Y * Z2_inv;
                J_pixel_xi(1, 5) = fy * X * Z_inv;

                J_img_pixel = Eigen::Vector2d(
                        0.5 * (GetPixelValue(img2, u + 1 + x, v + y) - GetPixelValue(img2, u - 1 + x, v + y)),
                        0.5 * (GetPixelValue(img2, u + x, v + 1 + y) - GetPixelValue(img2, u + x, v - 1 + y))
                );

                // total jacobian
                Vector6d J = -1.0 * (J_img_pixel.transpose() * J_pixel_xi).transpose();//得到雅克比矩阵

                hessian += J * J.transpose();//得到H矩阵
                bias += -error * J;//b矩阵
                cost_tmp += error * error;
            }
    }

    if (cnt_good) {
        // set hessian, bias and cost
        unique_lock<mutex> lck(hessian_mutex);
        H += hessian;
        b += bias;
        cost += cost_tmp / cnt_good;
    }
}

void DirectPoseEstimationMultiLayer(
        const cv::Mat &img1,
        const cv::Mat &img2,
        const VecVector2d &px_ref,
        const vector<double> depth_ref,
        Sophus::SE3d &T21) {

    // parameters
    int pyramids = 4;
    double pyramid_scale = 0.5;
    double scales[] = {1.0, 0.5, 0.25, 0.125};

    // create pyramids //构建金字塔
    vector<cv::Mat> pyr1, pyr2; // image pyramids
    for (int i = 0; i < pyramids; i++) {
        if (i == 0) {
            pyr1.push_back(img1);
            pyr2.push_back(img2);
        } else {
            cv::Mat img1_pyr, img2_pyr;
            cv::resize(pyr1[i - 1], img1_pyr,
                       cv::Size(pyr1[i - 1].cols * pyramid_scale, pyr1[i - 1].rows * pyramid_scale));
            cv::resize(pyr2[i - 1], img2_pyr,
                       cv::Size(pyr2[i - 1].cols * pyramid_scale, pyr2[i - 1].rows * pyramid_scale));
            pyr1.push_back(img1_pyr);//左图
            pyr2.push_back(img2_pyr);//右图
        }
    }

    double fxG = fx, fyG = fy, cxG = cx, cyG = cy;  // backup the old values
    //利用循环,我们可以从最小层到最大层(原始层)
    for (int level = pyramids - 1; level >= 0; level--) {
        VecVector2d px_ref_pyr; // set the keypoints in this pyramid level
        for (auto &px: px_ref) {
            px_ref_pyr.push_back(scales[level] * px);
        }

        // scale fx, fy, cx, cy in different pyramid levels  这里面的内参也要缩放 但深度不用,因为深度不变
        fx = fxG * scales[level];
        fy = fyG * scales[level];
        cx = cxG * scales[level];
        cy = cyG * scales[level];
        //对不同不理的图片进行单层的位姿估计,
        DirectPoseEstimationSingleLayer(pyr1[level], pyr2[level], px_ref_pyr, depth_ref, T21);
    }

}

运行结果:

slam十四讲-直接法实验

  • 14
    点赞
  • 42
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值