RGBD数据任务中depth信息的使用方式

本文综述了RGBD数据中深度信息的处理方法,包括深度图与点云的使用,以及通过HHA编码、LSTM和3D图神经网络等技术进行特征融合与场景语义分割的研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


先上个总结,depth信息使用大致分为两种:
1)depth map作为image,或者编码成为HHA image,再进行fusion,包括4-channel RGB-D for early fusion and feature operation for late fusion。前期的RGBD segmentation都是使用HHA image
2)转换成点云再处理,RGBD pose estimation和后来的一些segmentation是这种思路

Segmentaion

《Learning Rich Features from RGB-D Images for Object Detection and Segmentation》

2014年文章,很老了,fast RCNN&FCN都没出来的时候研究的RGBD for detection and segmentation。这里主要是将depth编码成三个维度的信息,提取特征后辅助进行propose proposal&分类
在这里插入图片描述
这个编码过程得到的是3 channels image,文中成为HHA:
在这里插入图片描述
整体上是RCNN的框架
在这里插入图片描述
作者还尝试了一个early fusion的方式,得到一个4 channels RGB-D,然而效果不太行
在这里插入图片描述

FCN

<
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值