Collating the processing methods of the depth information in RGBD data
- Segmentaion
-
- 《Learning Rich Features from RGB-D Images for Object Detection and Segmentation》
- FCN
- 《LSTM-CF: Unifying Context Modeling and Fusion with LSTMs for RGB-D Scene Labeling》
- 《Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture》
- 《3D Graph Neural Networks for RGBD Semantic Segmentation》
- Pose Estimation
先上个总结,depth信息使用大致分为两种:
1)depth map作为image,或者编码成为HHA image,再进行fusion,包括4-channel RGB-D for early fusion and feature operation for late fusion。前期的RGBD segmentation都是使用HHA image
2)转换成点云再处理,RGBD pose estimation和后来的一些segmentation是这种思路
Segmentaion
《Learning Rich Features from RGB-D Images for Object Detection and Segmentation》
2014年文章,很老了,fast RCNN&FCN都没出来的时候研究的RGBD for detection and segmentation。这里主要是将depth编码成三个维度的信息,提取特征后辅助进行propose proposal&分类
这个编码过程得到的是3 channels image,文中成为HHA:
整体上是RCNN的框架
作者还尝试了一个early fusion的方式,得到一个4 channels RGB-D,然而效果不太行