PCIe扫盲——PCIe总线性能评估(有效数据速率估算)

本文详细探讨了PCIe总线的实际有效速率计算,包括TLP头部和尾部、包编号、ECRC、LCRC等带来的开销,以及Max_Payload_Size、Read_Completion_Boundary(RCB)如何影响速率。通过分析,揭示了数据包大小、链路协议和流控协议开销如何平衡以确定总线的真实传输效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前面的文章提到过PCIe总线(Gen1&Gen2)采用了8b/10b编码,因此其有效数据速率为物理线路上的速率的80%。即Gen1的有效速率为2.0Gbps=2.5Gbps*80%,而Gen2的有效速率为4Gbps=5Gbps*80%。

如果以数据包的Data Payload为真实有效数据,来计算得话,实际应用中的有效速率会更低。因为,数据包的包头、包尾(LCRC和ECRC等)、数据链路层添加的包编号等等;用于Ack/Nak和Flow Control等的DLLP;用于链路训练和Skip的Order Sets等都会影响真实的有效速率。

这一篇文章,将来详细地聊一聊,如何粗略地估算一个PCIe总线的真实有效速率。

注:由于设备反应时间、数据处理时间、不确定的插入等待时间等等原因,无法从理论上,准确无误地计算出一个PCIe总线的真实有效速率。

注:关于8b/10b编码,前面的文章中已经详细地介绍过了,这里就不再重复了。

对于任意的一个TLP来说,除了Data Payload,还有物理层添加的包头(1 Byte)、数据链路层添加的包编号(2 Bytes)、事务层添加的包头(12 or 16 Bytes)、事务层添加的ECRC(4Bytes,可选的)、数据链路层添加的LCRC(4Bytes)和物理层添加的包尾(1 Byte)。具体如下图所示:

image.png

如果以3DW的事务层包头来计算,且不添加ECRC,则该TLP至少含有20 Bytes的额外数据(除了Data Payload之外的)。我们姑且称之为TLP Overhead。

注:32bits地址的TLP是3DW包头,而64bits地址的TLP是4DW包头,具体请参考前面的文章。

如果只从TLP Overhead考虑的话,显然每个TLP包含的Data Payload的量越大,真实有效速率越高。然而,实际应用中却并非如此,因为链路上的其他因素也在影响实际的真实有效速率。PCIe Spec规定,任何TLP都不允许被Order Sets或者DLLP打断。也就是说,Skip Order Sets和FC DLLP、Ack/Nak DLLP都只能在两个TLP之间发送。换一句话说,Data Payload越大,TLP的也就越长,为了保证正常通信,两个TLP之间的时间间隔也就越大。这就是为什么Data Payload越大,但真实有效速率却未必会越高的原因。

除了TLP Overhead之外,前面文章介绍的Ack/Nak机制和Flow Control机制都是需要花费时间的。这里我们分别称其所消耗的时间为Link Protocol Overhead和Flow Control Protocol Overhead。具体这里就不详细,介绍了,请参考之前的文章。

注:显然,更低频率的Flow Control Update,会一定程度上提高真实有效速率,但这需要更大的Rx Buffer,从而带来更高的硬件成本开销。一般情况下,PCIe设备都应当遵循Spec所定义的FC Update周期计算方式,具体可可参考前面的文章:http://blog.chinaaet.com/justlxy/p/5100053465

-----------------------------------------------------------------------------------------------------

除了前面介绍的TLP Overhead、Link Protocol Overhead和Flow Control Protocol Overhead之外,另一个影响真实有效速率的关键因素便是Max_Payload_Size,以及Read_Completion_Boundary(RCB)。

虽然PCIe Spec规定,TLP的Data Payload最高可达4096 Bytes,但同时也规定了PCIe体系结构中,所有的设备,都必须使用相同的Max_Payload_Size值。换一句话说,整个总线的Max_Payload_Size值必须使用总线体系结构中所有设备所支持的最小的Max_Payload_Size值。具体如下图所示:

image.png

注:每个设备中的Function的所支持的最大的Max_Payload_Size值应当是相同的。

注:每个设备所支持的Max_Payload_Size最大值信息,存在于Device Capability Register中。

Max_Payload_Size值的设置是在PCIe总线枚举和配置的过程中完成的,软件确定了Max_Payload_Size的值后,会将该值写入到每个设备的Device Control Register中。

在不考虑Ack/Nak机制和Flow Control机制等因素的情况下,真实有效速率可以这样计算:

image.png

则有:

image.png

image.png

以128 Bytes的Max_Payload_Size为例,不考虑Ack/Nak机制和Flow Control机制等因素的情况下,理论极限真实有效速率如下:

image.png

其中,1720Mb/s = 86% * 2000Mbps。(x1 Gen1)

注:读操作还需要考虑RCB等因素,后面会详细介绍。表格里的数据是在假设RCB为64 Bytes的情况下得到的,因此其计算方法为:64/(64+20)=76%。

-----------------------------------------------------------------------------------------------------

针对读操作,还有一个Maximun Read Request Size(即最大读请求)的概念,在PCIe总线配置的过程中,该值会被写入到每个设备的Device Control Register中。PCIe Spec规定,Maximun Read Request Size的值可以超过Max_Payload_Size,例如,可以向Max_Payload_Size为128 Bytes的设备,一次请求读512 Bytes的数据。此时,一次请求会对应多个返回的Completion。

然而,Maximun Read Request Size的值也并非越大越好,该值设置的过大,会导致某个PCIe设备独占整个系统带宽的时间过长。但是如果Maximun Read Request Size设置的过小,则需要发起多个读请求操作。

Read Completion Boundary(RCB)确定了针对读请求返回的每个Completion的Data Payload的最大值,一般为64 Bytes或者128 Bytes(由系统或者软件设置)。当然,Completion的Data Payload值,是可以小于RCB的。以64 Bytes 的RCB和一次读256 Bytes的请求为例,可能的情况如下图所示:

image.png

注:目前,大部分的Root都固定地使用64 Bytes的RCB,尽管Max_Payload_Size的值可能是128或者更大。

-----------------------------------------------------------------------------------------------------

最后,以几个例子,来回顾一下上面的内容。

image.png

image.png

image.png

-----------------------------------------------------------------------------------------------------

参考文献:

1、Xilinx. Understanding Performance of PCI Express Systems

注:原文最早发表于本人的ChinaAET博客(http://blog.chinaaet.com/justlxy/

<think>好的,用户想了解RCAB模块在图像超分辨率任务中的作用和原理。首先,我需要回忆一下RCAB的相关知识。RCAB全称是Residual Channel Attention Block,应该是在残差块的基础上加入了通道注意力机制。这通常用于提升超分辨率模型的性能。 记得残差块(Residual Block)在ResNet中被广泛使用,通过跳跃连接缓解梯度消失的问题,帮助训练更深的网络。而通道注意力机制,比如SENet中的Squeeze-and-Excitation模块,能够自动学习各个通道的重要性,增强有用的特征,抑制不重要的。RCAB可能结合了这两者。 接下来,需要确认RCAB的具体结构。根据常见的设计,RCAB可能包含多个卷积层,然后是通道注意力模块,最后通过残差连接相加。这样可以在提取特征的同时,动态调整各通道的权重,让网络更关注重要的信息。 在超分辨率任务中,RCAB的作用应该是增强高频细节的恢复,比如边缘和纹理,这对于提升图像清晰度至关重要。同时,通道注意力机制能有效利用通道间的依赖关系,优化特征表达,从而提升重建质量。 应用场景方面,RCAB可能被用于如EDSR、RCAN等超分辨率模型中。这些模型通常堆叠多个RCAB模块,通过深层的网络结构逐步恢复高分辨率图像。特别是在处理大倍数超分辨率(如4x、8x)时,RCAB能帮助保持细节,减少模糊。 还需要考虑RCAB的优势。比如,通过残差学习简化了优化过程,而通道注意力则增强了特征的区分能力。这可能使得模型在计算资源有限的情况下仍能保持高效,同时提升性能。 需要验证这些信息是否正确。参考用户提供的资料,引用[1]提到多尺度卷积和特征融合,引用[2]提到信息交互和注意力机制。虽然没有直接提到RCAB,但通道注意力属于注意力机制的一种,符合引用中的信息。因此可以推断RCAB的应用场景这些模块类似,用于特征提取和优化。 总结来说,RCAB的作用是通过残差结构和通道注意力机制,有效提取并优化特征,提升超分辨率重建的质量。应用场景包括各种基于深度学习的超分辨率模型,特别是在需要恢复细节和高效利用特征时。</think>RCAB(Residual Channel Attention Block)模块在图像超分辨率任务中主要用于**增强特征表达能力并优化高频细节恢复**,其核心原理是通过残差学习通道注意力机制的结合,动态调整特征通道的重要性权重。 ### 作用原理分步说明: 1. **残差学习框架** RCAB基于残差块(Residual Block)设计,包含两个卷积层和激活函数,通过跳跃连接(Skip Connection)将输入输出相加。这种方式缓解了梯度消失问题,支持更深的网络训练,公式为: $$F(x) = H(x) + x$$ 其中$H(x)$为残差函数,$x$为输入特征。 2. **通道注意力机制** 在残差块后引入通道注意力模块(Channel Attention Module),通过全局平均池化(Global Average Pooling)统计通道特征,并利用全连接层生成通道权重: $$w_c = \sigma(W_2 \cdot \delta(W_1 \cdot \text{GAP}(x)))$$ 其中$\sigma$为Sigmoid函数,$\delta$为ReLU,$W_1$和$W_2$为全连接层参数。最终输出特征为各通道加权后的结果: $$x' = w_c \cdot x$$ 该机制使网络自动关注对重建更重要的特征通道[^1]。 3. **多尺度特征融合** RCAB常多尺度特征提取模块结合(如引用[1]中提到的多尺度卷积层),通过不同感受野的卷积核捕获低频和高频信息,再利用通道注意力筛选关键特征,减少冗余计算,提升重建效率。 ### 应用场景 - **单图像超分辨率(SISR)**:如RCAN(Residual Channel Attention Networks)模型,通过堆叠多个RCAB模块恢复高分辨率图像的细节[^2]。 - **多模态超分辨率融合**:在红外可见光图像融合任务中,RCAB用于增强跨模态特征的表征能力,保留边缘和纹理信息[^1]。 - **轻量超分辨率网络**:由于通道注意力可抑制无效特征,RCAB在减少计算量的同时保持性能,适用于移动端部署。 ### 示例模型结构 ```python class RCAB(nn.Module): def __init__(self, channels): super().__init__() self.conv1 = nn.Conv2d(channels, channels, 3, padding=1) self.conv2 = nn.Conv2d(channels, channels, 3, padding=1) self.ca = ChannelAttention(channels) # 通道注意力模块 def forward(self, x): res = self.conv1(x) res = F.relu(res) res = self.conv2(res) res = self.ca(res) # 通道加权 return x + res # 残差连接 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值