目标检测之SSD学习笔记

SSD学习笔记

惯例,先放大佬链接(https://zhuanlan.zhihu.com/p/31427288)
SSD,全称Single Shot MultiBox Detector,是Wei Liu在ECCV 2016上提出的一种目标检测算法,截至目前是主要的检测框架之一,相比Faster RCNN有明显的速度优势,相比YOLO又有明显的mAP优势。(当然YOLOv3是比不过了)
在这里插入图片描述

SSD具有如下主要特点:

1、从YOLO中继承了将detection转化为regression的思路,一次完成目标定位与分类
2、基于Faster RCNN中的Anchor,提出了相似的Prior box;
3、加入基于特征金字塔(Pyramidal Feature Hierarchy)的检测方式,即在不同感受野的feature map上预测目标

本文接下来都以SSD 300为例进行分析。
在这里插入图片描述
上图2是原论文中的SSD300与YOLO网络结构图。位什么要把SSD与YOLO对比呢?因为截止到目前目标检测分为了2种主流框架:
1、Two stages:以Faster RCNN为代表,即RPN网络先生成proposals目标定位,再对proposals进行classification+bounding box regression完成目标分类。
2、Single shot:以YOLO/SSD为代表,一次性完成classification+bounding box regression。
那么来看同为Single shot方式的SSD/YOLO区别(有不清楚的可以看一下我的YOLOfaster-rcnn):

1、YOLO在卷积层后接全连接层,即检测时只利用了最高层Feature maps(包括Faster RCNN也是如此)
2、SSD采用金字塔结构,即利用了conv4-3/conv-7/conv6-2/conv7-2/conv8_2/conv9_2这些大小不同的feature maps,在多个feature maps上同时进行softmax分类和位置回归
3、SSD还加入了Prior box
对比如图3。
在这里插入图片描述

2 Prior Box

在SSD300中引入了Prior Box,实际上与Faster RCNN Anchor非常类似,就是一些目标的预选框,后续通过classification+bounding box regression获得真实目标的位置。

SSD按照如下规则生成prior box:

1、以feature map上每个点的中点为中心,生成一些列同心的prior box
2、正方形prior box最小边长为和最大边长为:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
但是,我们用公式推到出来的值与作者实际设置的值并不能匹配得上(真无语,玄学炼丹,名不虚传。。。)。
在这里插入图片描述
不过依然可以看出:SSD使用感受野小的feature map检测小目标,使用感受野大的feature map检测更大目标。
知道了priorbox如何产生,接下来分析prior box如何使用。这里还是以conv4_3分析。
在这里插入图片描述
从图5可以看到,在conv4_3网络分为了3条线路(这里很重要!!!,后面会再次提到!!!)
1、经过一次batch norm+一次卷积后,生成了[1, num_class*num_priorbox, layer_height, layer_width]大小的feature用于softmax分类目标和非目标(其中num_class是目标类别,SSD300中num_class = 21,即20个类别+1个背景)

2、经过一次batch norm+一次卷积后,生成了[1, 4*num_priorbox, layer_height, layer_width]大小的feature用于bounding box regression(即每个点一组[dxmin,dymin,dxmax,dymax],参考Faster R-CNN 2.5节)

3、生成了[1,2,4num_priorboxlayer_height*layer_width]大小的prior box blob,其中2个channel分别存储prior box的4个点坐标(x1, y1, x2, y2)和对应的4个参数variance

后续通过softmax分类判定Prior box是否包含目标,然后再通过bounding box regression即可可获取目标的精确位置,熟悉Faster RCNN的读者应该对上述过程应该并不陌生。其实pribox box的与Faster RCNN中的anchor非常类似,都是目标的预设框,没有本质的差异。区别是每个位置的prior box一般是4~6个(后面会提到!!!),少于Faster RCNN默认的9个anchor;同时prior box是设置在不同尺度的feature maps上的,而且大小不同。

还有一个细节就是上面prototxt中的4个variance,这实际上是一种bounding regression中的权重。在图4线路(2)中,网络输出[dxmin,dymin,dxmax,dymax],即对应下面代码中bbox;然后利用如下方法进行针对prior box的位置回归:

decode_bbox->set_xmin(
prior_bbox.xmin() + prior_variance[0] * bbox.xmin() * prior_width);
decode_bbox->set_ymin(
prior_bbox.ymin() + prior_variance[1] * bbox.ymin() * prior_height);
decode_bbox->set_xmax(
prior_bbox.xmax() + prior_variance[2] * bbox.xmax() * prior_width);
decode_bbox->set_ymax(
prior_bbox.ymax() + prior_variance[3] * bbox.ymax() * prior_height);

3 SSD的数据流

对于新学习SSD的人,肯定有一个很大的困惑,就是这么多feature maps和Prior Box,如何组合在一起进行forwards/backwards。本节专门介绍SSD的数据流动方式,也许有点难。但是只有了解SSD的数据流动方式才能真的理解。
那么多个feature maps如何协同工作?这时候就要用到Permute,Flatten和Concat这3种层了。
Permute是SSD中自带的层,上面conv4_3_norm_mbox_conf_perm的的定义。Permute相当于交换caffe blob中的数据维度。在正常情况下caffe blob的顺序为:

bottom blob = [batch_num, channel, height, width]

经过conv4_3_norm_mbox_conf_perm后的caffe blob为:

top blob = [batch_num, height, width, channel]

而Flattlen和Concat层都是caffe自带层,请参照caffe official documentation理解。
在这里插入图片描述
那么接下来以conv4_3和fc7为例分析SSD是如何将不同size的feature map组合在一起进行prediction。图7展示了conv4_3和fc7合并在一起的过程中caffe blob shape变化(其他层类似,考虑到图片大小没有画出来,请脑补)。
这里与上面的红色字体部分相呼应!!!

1、对于conv4_3 feature map,conv4_3_norm_priorbox(priorbox层)设置了每个点共有4个prior box。由于SSD 300共有21个分类,所以conv4_3_norm_mbox_conf的channel值为num_priorbox * num_class = 4 * 21 = 84;而每个prior box都要回归出4个位置变换量,所以conv4_3_norm_mbox_loc的caffe blob channel值为4 * 4 = 16。
2、fc7每个点有6个prior box,其他feature map同理。
3、经过一系列图7展示的caffe blob shape变化后,最后拼接成mbox_conf和mbox_loc。而mbox_conf后接reshape,再进行softmax(为何在softmax前进行reshape,Faster RCNN有提及)。
4、最后这些值输出detection_out_layer,获得检测结果
可以看到,SSD一次判断priorbox到底是背景 or 是20种目标类别之一,相当于将Faster R-CNN的RPN与后续proposal再分类进行了整合。
在这里插入图片描述

4 SSD网络结构优劣分析

SSD算法的优点应该很明显:运行速度可以和YOLO媲美,检测精度可以和Faster RCNN媲美。除此之外,还有一些鸡毛蒜皮的优点,不解释了。这里谈谈缺点:

1、需要人工设置prior box的min_size,max_size和aspect_ratio值。网络中prior box的基础大小和形状不能直接通过学习获得,而是需要手工设置。而网络中每一层feature使用的prior box大小和形状恰好都不一样,导致调试过程非常依赖经验。
2、虽然采用了pyramdial feature hierarchy的思路,但是对小目标的recall依然一般,并没有达到碾压Faster RCNN的级别。作者认为,这是由于SSD使用conv4_3低级feature去检测小目标,而低级特征卷积层数少,存在特征提取不充分的问题。

5 SSD训练过程

在这里插入图片描述
Matching strategy:

在训练时,groundtruth boxes 与 default boxes(就是prior boxes) 按照如下方式进行配对:

1、首先,寻找与每一个ground truth box有最大的jaccard overlap的default box,这样就能保证每一个groundtruth box与唯一的一个default box对应起来(所谓的jaccard overlap就是IoU,如图9)。
2、SSD之后又将剩余还没有配对的default box与任意一个groundtruth box尝试配对,只要两者之间的jaccard overlap大于阈值,就认为match(SSD 300 阈值为0.5)。
3、显然配对到GT的default box就是positive,没有配对到GT的default box就是negative。

Hard negative mining:

值得注意的是,一般情况下negative default boxes数量>>positive default boxes数量,直接训练会导致网络过于重视负样本,从而loss不稳定。所以需要采取:

所以SSD在训练时会依据confidience score排序default box,挑选其中confidence高的box进行训练,控制positive : negative = 1 : 3 =1: 3 =1:3(这里跟Faster-rcnn基本一致,至于为什么这样做,是为了消除正负样本不均衡的问题,具体可以查看我的这篇博客
Data augmentation:(这里说了很多,其实就是一个常规的Random crop)

数据增广。即对每一张image进行如下之一变换获取一个patch进行训练:

直接使用原始的图像(即不进行变换)
采样一个patch,保证与GT之间最小的IoU为:0.1,0.3,0.5,0.7 或 0.9
完全随机的采样一个patch。
在这里插入图片描述
L2范数标准化
在这里插入图片描述
同时在原文中还提到:

采样的patch占原始图像大小比例在 [0.1,1]之间
采样的patch的长宽比在 [0.5,2]之间
当 Ground truth box中心恰好在采样的patch中时,保留整个GT box
最后每个patch被resize到固定大小,并且以0.5的概率随机的水平翻转
最终以这些处理好的patches进行训练。

其实Matching strategy,Hard negative mining,Data augmentation,都是为了加快网络收敛而设计的。尤其是Data augmentation,翻来覆去的randomly crop,保证每一个prior box都获得充分训练而已。后续有Focal loss解决这个问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值