(MATLAB)基于变分模态分解与麻雀优化最小二乘支持向量机的短期电力负荷预测(VMD-SSA-LSSVM)
短期电力负荷预测是电力系统安全调度、经济运行的重要依据 , 随着电力系统的市场化 , 负荷预测的精度直接影响到电力系统运行的可靠性、经济性和供电质量。
LSSVM 为短期电力负荷预测提供了一个新的研究方向,本文将LSSVM用于短期电力负荷预测 , 提出基于LSSVM的短期电力负荷预测模型 , 同时建立基于麻雀算法(SSA)模型对LLSVM进行参数优化以提高预测精度。
但研究表明,直接对原始序列建立时间序列预测模型,会出现预测数据滞后于实际数据,这样的模型没有意义,这主要是因为时间序列数据中存在的自相关性造成的,因此我采用VMD分解方法对原始序列进行分解,然后对每个序列分别建模,最后把各序列测试集的结果相加作为最终结果。
对比分析结果显示,该模型的预测精度优于其他多种预测模型,该模型在短期负荷预测方面表现出较好的性能。
基于变分模态分解与麻雀优化最小二乘支持向量机的短期电力负荷预测(VMD-SSA-LSSVM)
随着电力系统的市场化,短期电力负荷预测已经成为电力系统安全调度和经济运行的重要依据。因为负荷预测的精度直接影响到电力系统的可靠性、经济性和供电质量。而LSSVM作为一种新的预测方法,可以为短期电力负荷预测提供一个新的研究方向。
本文提出了基于LSSVM的短期电力负荷预测模型,并结合麻雀算法(SSA)对模型中的参数进行了优化。但是,研究表明,直接对原始序列建立时间序列预测模型会出现预测数据滞后于实际数据的问题。这主要是由于时间序列数据中存在的自相关性造成的。因此,本文采用了VMD分解方法对原始序列进行分解,然后对每个序列分别建模,最后将各序列测试集的结果相加作为最终结果。
具体地,首先对电力负荷序列进行VMD分解,然后对每个分解序列分别建模,最后将各序列测试集的结果相加作为最终预测结果。同时使用麻雀算法对LSSVM模型中的参数进行优化,提高了预测精度。
为了验证该模型的性能,我们进行了实验比较,使用了其他多种预测模型进行对比分析。结果表明,该模型的预测精度优于其他多种预测模型,该模型在短期负荷预测方面表现出了较好的性能。因此,本文的模型具有重要的研究价值和应用前景。
在未来的研究中,可以考虑将该模型应用于其他时间序列预测领域,并进一步优化模型的性能。另外,可以尝试使用其他优化算法对LSSVM模型中的参数进行优化,以提高预测精度。
相关代码,程序地址:http://lanzouw.top/677266849859.html