LLM推理优化:Temperature Scaling怎么做

写在前面

Temperature Scaling (温度缩放) 是一种简单、高效且广泛应用的**后处理(post-hoc)**校准技术,它能在不改变模型预测结果(即哪个答案概率最高)的前提下,调整模型输出的概率分布,使其置信度更好地反映其实际的准确率。

本文将深入探讨 Temperature Scaling 的设计原理、实现方法。

1. LLM 的错误校准

什么是校准 (Calibration)?

一个完美校准的模型,其输出的置信度(概率)应该直接反映其预测的真实准确率。例如,如果模型对 100 个不同的预测给出了 80% 的置信度,那么我们期望其中大约 80 个预测是正确的。

现代 LLM 为何常常错误校准?

  1. 模型容量与过拟合: 现代 LLM 参数量巨大,容量极高。在训练过程中,它们可能在训练数据上过拟合,不仅学习了正确的模式,也记住了数据中的噪声,导致对训练分布内的样本过于自信。
  2. 训练目标: 标准的交叉熵损失函数旨在最大化正确类别的概率,它并不直接惩罚模型的校准错误。为了最小化损失,模型可能会倾
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kakaZhui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值