写在前面
Temperature Scaling (温度缩放) 是一种简单、高效且广泛应用的**后处理(post-hoc)**校准技术,它能在不改变模型预测结果(即哪个答案概率最高)的前提下,调整模型输出的概率分布,使其置信度更好地反映其实际的准确率。
本文将深入探讨 Temperature Scaling 的设计原理、实现方法。
1. LLM 的错误校准
什么是校准 (Calibration)?
一个完美校准的模型,其输出的置信度(概率)应该直接反映其预测的真实准确率。例如,如果模型对 100 个不同的预测给出了 80% 的置信度,那么我们期望其中大约 80 个预测是正确的。
现代 LLM 为何常常错误校准?
- 模型容量与过拟合: 现代 LLM 参数量巨大,容量极高。在训练过程中,它们可能在训练数据上过拟合,不仅学习了正确的模式,也记住了数据中的噪声,导致对训练分布内的样本过于自信。
- 训练目标: 标准的交叉熵损失函数旨在最大化正确类别的概率,它并不直接惩罚模型的校准错误。为了最小化损失,模型可能会倾