【llm对话系统】大模型 Llama 源码分析之并行训练方案

1. 引言

训练大型语言模型 (LLM) 需要巨大的计算资源和内存。为了高效地训练这些模型,我们需要采用各种并行策略,将计算和数据分布到多个 GPU 或设备上。Llama 作为当前最流行的开源大模型之一,其训练代码中采用了多种并行技术。本文将深入 Llama 的训练代码,分析其并行训练方案,主要关注参数并行部分结构参数共享

2. 并行训练策略概述

常见的并行训练策略包括:

  • 数据并行 (Data Parallelism, DP):将数据分成多个 batch,每个 GPU 处理一个 batch,所有 GPU 使用相同的模型副本。
  • 模型并行 (Model Parallelism, MP):将模型分成多个部分,每个 GPU 负责模型的一部分。
  • 流水线并行 (Pipeline Parallelism, PP):将模型的不同层分配到不同的 GPU 上,形成一个流水线。
  • 张量并行 (Tensor Parallelism, TP):将模型的张量 (例如,权重矩阵) 分片到多个 GPU 上。
  • 序列并行 (Sequence Parallelism, S
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kakaZhui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值