【论文阅读】Active Learning for Deep Object Detection via Probabilistic Modeling

Choi J, Elezi I, Lee H J, et al. Active Learning for Deep Object Detection via Probabilistic Modeling[J]. arXiv preprint arXiv:2103.16130, 2021.

摘要

本文的方法依赖于混合密度网络,这个网络能够估计每个定位和分类头输出的概率分布。本文通过单模型的前向传播来估计偶然不确定性和认知不确定性。本文的方法通过一个评分函数来总结这两种类型的不确定性设为两个部分来获取每张图像的信息量分数。

本文在PASCAL VOC和MSCOCO数据集上验证了方法的有效性。提出的方法性能优于基于单模型的方法,并且在计算成本方法与基于多模型的方法相比大大减少。

介绍

不确定性的预测可以拆分为偶然不确定性和认知不确定性两个方面。偶然不确定性是指数据的固有噪音,比如传感器噪音或是图像特征的遮挡或是缺失。认知不确定性是由于模型本身的能力所限并且与训练数据的密度成反比。在主动学习中建模并且区分这两种不确定性是十分重要的。为了计算这两种不确定性,学者们会用基于多模型的方法,比如集成方法或者MC dropout。然后对于基于多模型的方法往往需要较高的计算代价,而对于集成来说,这更增加了网络的参数量。另外,这些方法只依赖于分类的不确定性,完全无视了定位的不确定性。

本文的方法通过单模型的单次前向传播,相比于基于多模型的方法显著的减少了计算代价。另外,提出的模型达到了很高的精确度。本文的方法使用了基于定位和分类的偶然和认知不确定性。如图所示,我们的方法基于混合密度网络来对于每个网络的输出学习高斯混合模型(GMM)。为了更有效的训练网络,本文提出了一个损失函数作为不一致数据的正则器,来使模型更加健壮。提出的方法通

过结合图像中每一个目标的基于定位和分类的不确定性来评估每张图像的信息量得分。因为从经验上来说,对于分类的不确定性和定位的不确定性在提高精确度上是同等重要的。

本文的方法表现优于基于单模型的方法,并且对于基于多模型的方法,本文的方法可以达到相似的精确度但是大大减少了计算代价。

本文贡献如下:

本文提出了一个新型的适用于目标检测的深度主动学习方法,这个方法通过同时考虑定位以及分类的信息来评估相应的偶

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值