点击上方蓝字可直接关注!方便下次阅读。如果对你有帮助,麻烦点个在看或点个赞,感谢~ 文章首发 公众号—— Pou光明
大家好,这段时间我并没有荒废时间,做了自己认为有意义的几件事:
①改变投资思路,及时止盈
②项目紧急时,提高专注力
③从学习中寻找快乐,认识到学习(任何形式)以及能力提升是螺旋上升的
下面从高数的一元函数积分学说起:
一、考研数学三大计算之积分
脑袋里犹存的是7年前导数的公式,之前复习的东西也所剩不多,果然没有知识体系的知识是容易被遗忘的,而且很难被回想起来。
1、从这里下手
想学习,又不知道从哪里下手。
先看《张宇考研数学基础30讲》2021版109页的基本积分公式前两三个,大概长这样:
还行,大概能看懂。
2、四大方法之第一类换元法(凑微分法)
①
虽然看起来挺陌生,不过没关系,下面整理思路并结合例子来说明。
②
简单情况下我们看到的是上面的表达式,我们需要凭借自己的经验将其转换为下面的形式,总结下来就是遇山开山、逢水搭桥,缺啥补啥。
③
请看下面例子:
首先我们看到的是①式,对于简单题目来讲,我们第一考虑的是是谁的导数,答案是lnx,即d(lnx) = ,直接到了③式;不明白d(lnx) = 的可以查看高等数学(第七版上册)112页;令lnx为u,即转换为基本积分公式。复杂的题目往往都是由简单的题目符合而成,首先要对简单的题目极为熟练。
2、由上述题目的延伸及思考
通过往后的学习,积分方法还有第二类换元法、分部积分法等。最终考试题目往往是几种方法的组合,此外还要知道每种方法应对的情况。
后来通过温习,组建知识框架,一元函数积分学的概念与计算分为
概念:
不定积分
定积分
变限积分
反常积分
计算:
基本积分公式
凑微分法
换元法
分部积分法
有理函数积分
寥寥几字,皆可扩展。
可以想象,在开始阶段我们无法去完成复杂题目的计算,只有将这几种方法全部掌握之后才能去完成综合型题目。即知识的学习是螺旋式上升的。你想想,面对数学那种题目,往往需要好几步化简解析才能知道出题人想要考察的题目,数学题解的好需要经常总结,那么生活中也是如此。
3、总结与升华
最后要升华主题,紧扣文章主题的“快乐”——在高铁上思考数学题使我快乐、慢慢觉得手机也没啥意思、重在感悟与坚持。
欢迎关注公众号—— Pou光明
遇见有趣的生活~