设计时序逻辑电路
功能要求:用JK触发器和逻辑门设计一个七进制的同步加法计数器
首先分析题目,可以知道七进制计数器有7个不同的状态,需要3个触发器(触发器有两个状态)
2
3
≥
7
2^3 \ge 7
23≥7
第一步 状态转换图
得到计数器输出端 Q 2 , Q 1 , Q 0 Q2,Q1,Q0 Q2,Q1,Q0的状态转换图如下所示:
第二步 次态转换图
-
总的次态转换图如下所示:
-
各位输出分卡诺图如下所示:
- Q 0 Q_0 Q0的次态
- Q 1 的 次 态 Q1的次态 Q1的次态
- Q 2 Q2 Q2的次态
第三步 状态方程
写状态方程时重点在于我们使用的是JK触发器,所以有意的写成JK触发器特性方程的形式
ps:JK触发器相关知识复习点击此处跳转
- Q 0 n + 1 = Q 1 n ‾ Q 0 n ‾ + Q 2 n ‾ Q 0 n ‾ = Q 2 n ‾ Q 1 n ‾ Q 0 n ‾ = Q 2 n ‾ Q 1 n ‾ ⋅ Q 0 n ‾ = Q 2 n ‾ Q 1 n ‾ ⋅ Q 0 n ‾ + 0 ⋅ Q 0 n Q_0^{n+1}=\overline{{Q_1^{n}}}\ \overline{{Q_0^{n}}}+\overline{{Q_2^{n}}}\ \overline{{Q_0^{n}}}=\overline{{Q_2^{n}}}\ \overline{{Q_1^{n}}}\ \overline{{Q_0^{n}}}=\overline{{Q_2^{n}}}\overline{{Q_1^{n}}} \cdot \overline{{Q_0^{n}}}=\overline{{Q_2^{n}}}\overline{{Q_1^{n}}}\cdot \overline{{Q_0^{n}}}+0\cdot {{Q_0^{n}}} Q0n+1=Q1n Q0n+Q2n Q0n=Q2n Q1n Q0n=Q2nQ1n⋅Q0n=Q2nQ1n⋅Q0n+0⋅Q0n
- Q 1 n + 1 = Q 0 n ⋅ Q 1 n ‾ + Q 2 n ‾ Q 0 n ‾ ⋅ Q 1 n ‾ Q_1^{n+1}={{Q_0^{n}}}\cdot \overline{{Q_1^{n}}}+\overline{{Q_2^{n}}}\ \overline{{Q_0^{n}}}\cdot\overline{{Q_1^{n}}} Q1n+1=Q0n⋅Q1n+Q2n Q0n⋅Q1n
- Q 2 n + 1 = Q 1 n Q 0 n ⋅ Q 2 n ‾ + Q 1 n ‾ ⋅ Q 2 n Q_2^{n+1}={{Q_1^{n}}}{{Q_0^{n}}}\cdot \overline{{Q_2^{n}}}+\ \overline{{Q_1^{n}}}\cdot {{Q_2^{n}}} Q2n+1=Q1nQ0n⋅Q2n+ Q1n⋅Q2n
第四步 驱动方程
根据三个触发器的状态方程,和采用的JK触发器特性方程联合(注:
Q
n
+
1
=
J
Q
n
+
K
′
Q
n
Q^{n+1}=JQ^n+K'Q^n
Qn+1=JQn+K′Qn),求出相应的驱动方程
J
0
=
Q
2
n
Q
1
n
‾
K
0
′
=
0
⇒
K
0
=
1
J_0=\overline{{{Q_2^n}}{{Q_1^{n}}} }\qquad K_0'=0\Rightarrow K_0=1
J0=Q2nQ1nK0′=0⇒K0=1
J
1
=
Q
0
n
K
1
=
Q
2
n
‾
Q
0
n
‾
‾
J_1={{Q_0^{n}}} \qquad K_1=\overline{\overline{{{Q_2^{n}}}}\ \ \overline{{{Q_0^{n}}}}}
J1=Q0nK1=Q2n Q0n
J
2
=
Q
1
n
Q
0
n
K
2
=
Q
1
n
J_2={{Q_1^n}}{{Q_0^{n}}} \qquad K_2={{Q_1^{n}}}
J2=Q1nQ0nK2=Q1n
第五步 根据驱动方程画电路图
根据驱动方程画出电路图如下所示
第六步 检查自启动
检查自启动先检查状态转换图的无效状态码"“111"”,接下来将这个码作为电路的初始状态代入,发现’’‘111’’'的次态是"“000"”,000正好是状态循环圈中的一部分。
所以电路能够自启动。
下面是自启动状态转换图:
时序逻辑电路的设计这样就结束啦!