大模型——用LM Studio本地运行大模型

大模型——用LM Studio本地运行大模型

LM Studio 是一款流行的 GUI 应用程序,它允许具有基本计算机知识的用户在其 Linux 机器上轻松下载、安装和运行大型语言模型 (LLM)。

用LM Studio本地运行大模型

LM Studio 是一款流行的 GUI 应用程序,它允许具有基本计算机知识的用户在其 Linux 机器上轻松下载、安装和运行大型语言模型 (LLM)。

可以使用 LM Studio 聊天界面轻松安装、设置和访问流行的 LLM 模型,例如 Llama 3、Phi3、Falcon、Mistral、StarCoder、Gemma 等。

这样,你就不会被 OpenAI 的 ChatGPT 等专有的基于云的 AI 所困扰,并且可以轻松地在离线状态下私下运行自己的 LLM,而无需为完整功能支付任何额外费用。

在本文中,我将向你展示如何在 Linux 上安装 LM Studio、下载并使用 GPT-3 模型。

系统要求

在 PC 上本地运行 LLM 模型需要满足某些最低要求才能确保获得良好的体验。确保你至少拥有…

  • 具有至少 8 GB VRAM 的 NVIDIA 或 AMD 显卡。
  • 20 G
### LM Studio 本地部署视觉大模型 #### 安装与设置 LM Studio 提供了一种简便的方法来安装和使用各种类型的大型语言模型,包括但不限于视觉大模型。为了开始使用这些功能,在官方网页上可以选择适合操作系统(Windows 或 Mac)的版本进行下载[^3]。 一旦完成软件本身的安装之后,对于想要探索视觉处理能力的情况来说,则需进一步获取特定于图像识别或其他视觉任务预训练好的权重文件或是完整的视觉大模型。这类资源通常可以从开源社区、研究机构发布的项目页面找到,并按照其说明文档来进行加载到LM Studio环境中[^1]。 #### 加载视觉大模型 在成功安装了LM Studio 并准备好了所需的视觉大模型后,可以通过图形界面方便地导入所选模型: - 启动应用; - 寻找“Load Model”按钮或菜单项; - 浏览至存储有先前下载完毕之视觉大模型的位置并选取相应文件夹或压缩包; - 确认选择以启动加载流程;此过程中可能还会提示是否开启硬件加速选项比如GPU支持等特性以便提高性能表现。 #### 进行预测/推理 当一切就绪以后,便可以在界面上指定输入源——这可能是上传图片路径或者是摄像头实时流等形式的数据集作为待分析对象。接着点击执行命令让系统基于已加载的视觉大模型给出相应的解析结果,如分类标签、边界框坐标之类的信息反馈给用户查看[^2]。 ```python # 假设有一个名为 predict_image 的函数用于调用内部API实现上述过程 result = predict_image(image_path="path/to/image.jpg", model_name="visual_model") print(result) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不二人生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值