大模型——Ollama-OCR 简明教程

大模型——Ollama-OCR 简明教程

Ollama-OCR 简明教程

Llama 3.2-Vision 是一个多模态大型语言模型,有 11B 和 90B 两种大小,能够处理文本和图像输入以生成文本输出。该模型在视觉识别、图像推理、图像描述和回答与图像相关的问题方面表现出色,在多个行业基准测试中优于现有的开源和闭源多模态模型。

在本文中,我将介绍如何调用由 Ollama 运行的 Llama 3.2-Vision 11B 建模服务并使用 Ollama-OCR 实现图像文本识别 (OCR) 功能。

Ollama-OCR 的功能:

  • 使用 Llama 3.2-Vision 模型进行高精度文本识别
  • 保留原始文本格式和结构
  • 支持多种图像格式:JPG、JPEG、PNG
  • 可自定义的识别提示和模型
  • Markdown 输出格式选项
  • 强大的错误处理

1、环境安装

在开始使用 Llama 3.2-Vision 之前,需要安装 Ollama,这是一个支持在本地运行多模态模型的平台。按照以下步骤

### Ollama OCR 技术及其使用与实现 Ollama 是一种基于大语言模型(LLM)的技术框架,专注于提供高效的本地化部署解决方案。尽管 Ollama 主要用于 LLM 的运行和管理[^2],但它也可以通过扩展与其他技术集成来支持特定的应用场景,比如光学字符识别(OCR)。以下是关于如何利用 Ollama 实现 OCR 功能的相关技术和工具的信息。 #### 工具和技术概述 为了实现 OCR 功能并结合 Ollama 使用,可以考虑以下几种方式: 1. **Tesseract OCR 集成**: Tesseract 是一个开源的 OCR 引擎,能够处理多种图像格式并将其中的文字提取出来。可以通过 Python 或其他编程语言将其与 Ollama 结合起来,从而让后者分析或生成文字内容。 ```python import pytesseract from PIL import Image def extract_text_from_image(image_path): image = Image.open(image_path) text = pytesseract.image_to_string(image) return text extracted_text = extract_text_from_image('example.png') print(extracted_text) ``` 2. **Google Cloud Vision API**: 如果需要更高级的功能或者更高的精度,可以选择 Google Cloud Vision API 来完成 OCR 任务。此服务提供了强大的自然语言处理能力,并能轻松地与 Ollama 进行交互以增强其功能[^1]。 3. **EasyOCR**: EasyOCR 是另一个流行的库,它支持超过80种语言并且不需要依赖外部服务器即可工作。这使得它非常适合离线环境下的应用开发需求。 ```python import easyocr reader = easyocr.Reader(['en']) result = reader.readtext('image.jpg', detail=0) print(result) ``` 4. **Pytesseract 和 OpenCV 组合**: 对于更加复杂的文档结构解析任务,则可能需要用到计算机视觉方面的知识配合 Pytesseract 完成预处理操作后再执行 OCR 提取过程。 #### 实施步骤说明 虽然不允许使用诸如“首先”之类的引导词,但仍需强调几个关键环节: - 数据准备阶段涉及收集训练样本以及标注这些图片中的文本区域; - 模型选择取决于具体应用场景的要求——如果追求速度则倾向于轻量级方案;反之若注重准确性可选用复杂度较高的算法; - 后端逻辑设计方面应考虑到前后两端通信协议的设计、错误处理机制建立等问题。 #### 示例代码片段展示 下面给出一段简单的例子演示如何将上述提到的一些组件串联在一起形成完整的流程: ```python import cv2 from ocr_tool import perform_ocr # 假设我们有一个自定义函数来进行实际的 OCR 处理 def process_document(file_name): img = cv2.imread(file_name) gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) _, thresholded_img = cv2.threshold(gray_img, 150, 255, cv2.THRESH_BINARY_INV) detected_texts = perform_ocr(thresholded_img) return detected_texts if __name__ == "__main__": file_input = 'test_doc.jpg' output = process_document(file_input) print(output) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不二人生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值