大模型——Crawl4AI使用JsonCssExtractionStrategy进行结构化数据提取

大模型——Crawl4AI使用JsonCssExtractionStrategy进行结构化数据提取

本章节将详细介绍Crawl4AI中的JsonCssExtractionStrategy,利用CSS选择器从网页中提取结构化数据。将涵盖模式定义、提取加密货币价格的实际示例、该方法的优势以及有效使用的技巧。

概述

JsonCssExtractionStrategy是Crawl4AI的一项强大功能,允许用户使用CSS选择器从网页中提取结构化数据。这种方法特别适用于需要从一致的HTML结构中提取特定数据点的情况,例如表格或重复的元素。

该策略通过定义一套模式(schema)来工作,模式中包含以下内容:

  1. 重复元素的基础CSS选择器
  2. 从每个元素中提取的字段,每个字段都有自己的CSS选择器

这种策略的执行速度快且高效,因为它不依赖于外部服务(如大语言模型)进行数据提取。

示例:从Coinbase提取加密货币价格

下面是一个提取Coinbase探索页面上的加密货币价格的示例。

import json
import asyncio
from crawl4ai import AsyncWebCrawler
from crawl4ai.extrac
<think>好的,用户想了解Crawl4AI结构化数据采集框架的使用方法。首先,我需要回忆之前提供的引用内容,确保信息准确。引用中提到Crawl4AI能处理动态内容,比如iframe和延迟加载,还有自定义超时功能,这些都要涵盖进去。然后,用户可能对如何实际操作感兴趣,比如安装步骤、配置数据模型、执行采集策略等。需要分步骤说明,保持结构清晰。可能用户是开发者或数据分析师,需要具体代码示例,比如Python的代码片段,这样他们可以快速上手。另外,用户提到“结构化信息”,所以应该强调数据模型的定义和自动提取策略,如引用2中提到的。还要注意引用文献的正确标注,比如在动态内容处理部分加上[^1],在数据模型部分加上[^2]。最后,生成相关问题时要考虑用户可能的后续疑问,比如性能优化或处理复杂结构的方法。需要确保回答符合中文要求,LaTeX格式正确,特别是行内公式和独立公式的使用。检查是否有遗漏的步骤或功能,比如自定义超时和延迟加载的处理,确保覆盖所有用户可能关心的点。同时,保持语言自然,避免术语堆砌,让用户容易理解。</think>### Crawl4AI 结构化数据采集框架使用说明 Crawl4AI 是一款专注于动态网页内容采集的开源框架,其核心能力在于处理复杂网页结构并提取结构化数据。以下是具体使用方法: #### 1. 环境配置 ```python # 安装最新版本 pip install crawl4ai --upgrade # 导入核心模块 from crawl4ai.web_crawler import WebCrawler from crawl4ai.extractor import * ``` #### 2. 定义数据模型 通过类继承定义目标数据结构,支持嵌套结构: ```python class ProductItem: name: str = Field(selector="div.product-name") price: float = Field(selector="span.price", post_processor=lambda x: float(x.replace('$',''))) specs: dict = Field(selector="ul.spec-list", extractor=DictExtractor(key_selector="li > span.name", value_selector="li > span.value")) ``` #### 3. 配置采集策略 ```python crawler = WebCrawler( timeout=30, # 自定义超时设置 render_js=True, # 启用JavaScript渲染 proxy="socks5://user:pass@host:port", # 代理配置 extractors=[ RegexExtractor(pattern=r'\b\d{3}-\d{4}\b'), # 电话号码正则 XPathExtractor('//div[@class="main-content"]') # 核心内容定位 ] ) ``` #### 4. 执行数据采集 ```python result = crawler.run( url="https://example.com/products", extractor=CombinedExtractor( model_extractor=ModelExtractor(ProductItem), screenshot=True # 保存页面快照 ) ) # 输出结构化数据 print(result.data.model_dump()) ``` #### 5. 处理动态内容 针对iframe和延迟加载内容: ```python result = crawler.run( url="https://complex-page.com", wait_for=["div.lazy-loaded-content", "iframe#data-frame"], scroll_interval=2 # 滚动加载间隔 ) ``` #### 关键特性说明 - **智能解析**:自动识别网页编码和内容类型 - **反反爬机制**:支持请求头随机化和IP轮换[^3] - **质量监控**:内置数据验证管道 $$ Q = \frac{V_{valid}}{V_{total}} \times 100\% $$ 其中$Q$表示数据质量分数,$V_{valid}$为有效数据
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不二人生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值