Moore-Penrose伪逆

Moore-Penrose伪逆

1. 作用

对于方程Ax = y, 如果A可逆,我们可以求得 x=A1y ;当矩阵A的行数大于列数,那么方程可能没有解。当行数小于列数时,存在多个解。

此时,使用Moore-Penrose 伪逆(Moore-Penrose pseudoinverse)用来解决这类问题,来求得一个x,使得Ax和y的欧几里得距离最小。

2. 求法

矩阵A的伪逆定义为: A+=lima0(ATA+αI)1AT ;

但是计算的时候,使用的是: A+=VD+UT 。这里的U、D和V是矩阵A奇异值分解后得到的矩阵。对角矩阵D的伪逆 D+ 是其非零元素取倒数之后再转置得到的。

当矩阵A的列数多余行数时,可以使用很多方法求解线性方程,当然也可以使用伪逆。 x=A+y 是方程所有可行解中欧几里得范数 x2 最小的一个。

当矩阵A的行数多于列数时,可能没有解。在这种情况下,通过伪逆得到的x使得Ax和y的欧几里得距离 Axy2 最小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值