回归预测 | MATLAB实现PSO-GRNN粒子群优化广义回归神经网络多输入单输出预测(含优化前后预测可视化)

本文介绍了如何使用MATLAB实现基于粒子群优化(PSO)的广义回归神经网络(GRNN)进行多输入单输出的回归预测。通过优化广义因子值,该模型适用于6个输入特征和1个输出特征的数据集。主程序文件MainPSOGRNNR.m与其他辅助函数协同工作,能够输出预测的RMSE、MAPE、MAE和R2指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值