锂电池剩余寿命预测 | 基于BiLSTM-Attention的锂电池剩余寿命预测,附锂电池最新文章汇集

锂电池剩余寿命预测 | 基于BiLSTM-Attention的锂电池剩余寿命预测,附锂电池最新文章汇集

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

锂电池剩余寿命预测 | 基于BiLSTM-Attention的锂电池剩余寿命预测,附锂电池最新文章汇集

Matlab基于BiLSTM-Attention的锂电池剩余寿命预测
第20讲 Matlab基于BiLSTM-Attention的锂电池剩余寿命预测(单变量),双向长短期记忆神经网络融合注意力机制(自注意力机制,多头注意力机制)
基于BiLSTM-Attention的锂电池剩余寿命预测是一种先进的预测方法,它结合了双向长短期记忆网络(BiLSTM)和注意力机制(Attention)的优势,以实现对锂电池剩余寿命(Remaining Useful Life, RUL)的准确预测。
一、锂电池剩余寿命预测的重要性
锂电池的循环寿命有限,准确预测其剩余寿命对于保障设备的安全可靠运行至关重要。
二、BiLSTM-Attention模型原理
BiLSTM网络:
BiLSTM是一种特殊的循环神经网络(RNN),它能够处理时间序列数据,并记忆长期依赖关系。与传统的LSTM相比,BiLSTM具有双向结构,能够同时考虑当前时刻前面的信息和后面的信息,从而提高模型的表现力。

注意力机制:
注意力机制是一种加强模型对不同位置信息关注程度的机制,能够自动分配输入序列中不同位置的权重。在BiLSTM-Attention模型中,注意力机制允许模型在每个时刻自适应地计算与当前时刻最相关的输入信息,并对相应权重进行加权求和,从而聚焦于重要的元素,提高预测精度。

三、BiLSTM-Attention模型结构
基于BiLSTM-Attention的锂电池剩余寿命预测模型包含以下部分:
数据预处理:对电池运行数据进行归一化等处理,以提高模型训练效果。

BiLSTM网络:将预处理后的数据输入BiLSTM网络,提取时间序列特征。

注意力机制:利用注意力机制筛选出BiLSTM网络输出的关键特征,并将它们加权汇总。

运行环境Matlab2023b及以上
Matlab代码,运行环境要求MATLAB版本为2023b及其以上
在这里插入图片描述
在这里插入图片描述

往期回顾
截至目前,锂电池预测相关文章已发多篇,汇集如下:
锂电池SOH预测
锂电池SOH预测 | 基于BiGRU双向门控循环单元的锂电池SOH预测,附锂电池最新文章汇集
锂电池SOC估计
锂电池SOC估计 | Matlab基于BP神经网络的锂电池锂电池SOC估计
锂电池SOC估计 | Matlab基于LSTM神经网络的锂电池锂电池SOC估计(待)
锂电池SOC估计 | Matlab基于CNN神经网络的锂电池锂电池SOC估计(待)
高创新 | PyTorch基于改进Informer模型的锂电池SOC估计
锂电池寿命预测
锂电池剩余寿命预测 | Matlab基于CNN-LSTM的锂电池剩余寿命预测(待)
锂电池剩余寿命预测 | Matlab基于Transformer-BiGRU的锂电池剩余寿命预测
电池预测 | 第13讲 基于LSTM-Attention的锂电池剩余寿命预测
电池预测 | 第12讲 基于Transformer-GRU的锂电池剩余寿命预测
电池预测 | 第11讲 基于Transformer-BiLSTM的锂电池剩余寿命预测
电池预测 | 第10讲 基于Transformer-LSTM的锂电池剩余寿命预测
电池预测 | 第9讲 基于Transformer的锂电池剩余寿命预测
电池预测 | 第8讲 基于ARIMA的锂电池剩余寿命预测
电池预测 | 第7讲 基于SSA-SVR麻雀算法优化支持向量回归的锂离子电池剩余寿命预测
电池预测 | 第6讲 基于ALO-SVR蚁狮优化支持向量回归的锂离子电池剩余寿命预测
电池预测 | 第5讲 基于BiGRU锂电池剩余寿命预测
电池预测 | 第4讲 基于GRU锂电池剩余寿命预测
电池预测 | 第3讲 基于BiLSTM锂电池剩余寿命预测
电池预测 | 第2讲 基于LSTM锂电池剩余寿命预测
电池预测 | 第1讲 基于机器学习的锂电池寿命预测

程序设计





%% 清空环境
clear;%清工作区
clc;%清命令
close all;%关闭所有的Figure窗口 
format compact;%压缩空格
tic;%开始计时
%% 005号电池
load('B0005.mat')
m1=616; %616个数据
n1=168; %168个discharge放电数据
[~,index] = sortrows({B0005.cycle.type}.');
B0005.cycle = B0005.cycle(index);
clear index  %以上3行为将type排序
A=zeros(168,1); %A矩阵为1681列的零矩阵
j=1;
for i=171:338
    A(j,1)=B0005.cycle(i).data.Capacity;
    i=i+1;
    j=j+1;
end
% 6号电池
load('B0006.mat')
m2=616;
n2=168;
[~,index] = sortrows({B0006.cycle.type}.');
B0006.cycle = B0006.cycle(index);
clear index
B=zeros(168,1);
j=1;
for i=171:338
    B(j,1)=B0006.cycle(i).data.Capacity;
    i=i+1;
    j=j+1;
end
%% 7号电池
load('B0007.mat')
m3=616;
n3=168;
[~,index] = sortrows({B0007.cycle.type}.');
B0007.cycle = B0007.cycle(index);
clear index
C=zeros(168,1);
j=1;
for i=171:338
    C(j,1)=B0007.cycle(i).data.Capacity;
    i=i+1;
    j=j+1;
end
%% 18号电池
load('B0018.mat')
m4=319;
n4=132;


参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

近年来,随着电动汽车的飞速发展,越来越多的注意力被投入到电池寿命的预测研究上。其中,LSTM技术被广泛应用于电池寿命预测领域。那么,Python LSTM如何预测电池寿命呢? 首先,我们需要了解电池寿命的影响因素。电池的使用环境、充放电次数、放电深度等因素均会影响电池寿命。这些信息可以通过传感器和其他设备获取,并在LSTM网络中进行建模和分析。 其次,我们需要构建LSTM网络。借助Python编程语言和Keras框架,我们可以轻松构建LSTM网络。该网络采用多层LSTM模型,可以对数据进行处理和训练。 然后,我们需要进行数据预处理。一般来说,电池寿命预测需要对收集到的数据进行处理和清洗。这些数据包括电池的历史充放电次数、电量、环境温度等。通过对数据进行预处理和清洗,我们可以更好地训练模型,提高准确性和可靠性。 最后,我们需要进行模型训练和测试。通过将数据分为训练集、验证集和测试集,我们可以训练模型并对其进行评估。在测试期间,我们可以使用多种方法评估模型的性能,如使用均方根误差(RMSE)和平均绝对误差(MAE)来衡量模型的准确性。 总体来说,Python LSTM是一种有效的预测电池寿命的方法。通过细致的数据处理和LSTM网络建模,我们可以对电池寿命进行精准预测,从而在实现高效节能的同时提高电池的使用寿命。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值