1-几何和复算术

一、引言

1.1 历史的概述

a + i b a+ib a+ib这个复数可以看成 x y xy xy平面上以 ( a , b ) (a,b) (a,b)为坐标的点,或等价地看作是连接原点到此点的向量。如图1.1所示,这样来看待的平面记作 C C C,并称为复平面。
在这里插入图片描述
对两个复数的加法和乘法现在也可以赋予确定的几何意义,即解释为平面上相应的点(或向量)的几何运算。

图1-2a演示了加法的法则

两 个 复 数 之 和 A + B 通 常 由 向 量 加 法 的 平 行 四 边 形 法 则 给 出 ( 1.1 ) 两个复数之和A+B通常由向量加法的平行四边形法则给出\quad(1.1) A+B(1.1)

注意,这与图1-1是相容的,因为 4 + 3 i 4+3i 4+3i确实是 4 4 4 3 i 3i 3i之和。

图1-2b画出了不那么明显的乘法法则:

A B 之 长 是 A 之 长 与 B 之 长 的 乘 积 , A B 的 幅 角 是 A 与 B 的 幅 角 之 和 ( 1.2 ) AB之长是A之长与B之长的乘积,AB的幅角是A与B的幅角之和\quad(1.2) ABABABAB(1.2)

这个法则并不是由图1-1就可以看出的。但是要注意它至少是与图1-1不矛盾的, 3 i 3i 3i确实是 3 3 3 i i i的乘积。 i i i与自身的乘积是一个更加有趣的例子。因为 i i i有单位长,而幅角为 ( π / 2 ) , i 2 (\pi/2),i^2 (π/2),i2也就有与单位长度与幅角 π \pi π。所以 i 2 = − 1 i^2=-1 i2=1

1.2 庞贝利的“奇想”

复分析的力量和美丽最终来自乘法法则(1.2)以及加法法则(1.1)。这些法则最初是由庞贝利以符号规则的形式给出的;到两个多世纪多以后才出现了图1-2。现在我们回到16世纪来尝试理解其代数根源。

很多教科书都以一种方便的历史虚构来引入复数,即以求解二次方程:

x 2 = m x + c ( 1.3 ) x^2=mx+c\quad(1.3) x2=mx+c(1.3)

为基础。这个方程的解法是如下的公式:

x = 1 2 [ m ± m 2 + 4 c ] x=\frac{1}{2}[m\pm\sqrt{m^2+4c}] x=21[m±m2+4c ]

如果 m 2 + 4 c m^2+4c m2+4c为负会发生什么情况?因为需要方程(1.3)有解,就迫使我们严肃地考虑复数。

庞贝利假设两个复数 A = a + i a ~ A=a+i\tilde{a} A=a+ia~ B = b + i b ~ B=b+i\tilde{b} B=b+ib~的加法需服从一个似乎近情理的法则:

A + B = a + i a ~ + b + i b ~ = ( a + b ) + i ( a ~ + b ~ ) ( 1.5 ) A+B=a+i\tilde{a}+b+i\tilde{b}=(a+b)+i(\tilde{a}+\tilde{b})\quad(1.5) A+B=a+ia~+b+ib~=(a+b)+i(a~+b~)(1.5)

同时他假设复数的乘法可以像通常代数那样把括号展开,于是:

( a + i a ~ ) ( b + i b ~ ) = a b + i ( a b ~ + a ~ b ) + i 2 a ~ b ~ (a+i\tilde{a})(b+i\tilde{b})=ab+i(a\tilde{b}+\tilde{a}b)+i^2\tilde{a}\tilde{b} (a+ia~)(b+ib~)=ab+i(ab~+a~b)+i2a~b~

利用 i 2 = − 1 i^2=-1 i2=1,他得出结论说两个复数的乘积应由下式给出:

A B = ( a + i a ~ ) ( b + i b ~ ) = ( a b − a ~ b ~ ) + i ( a b ~ + b ~ a ) ( 1.6 ) AB=(a+i\tilde{a})(b+i\tilde{b})=(ab-\tilde{a}\tilde{b})+i(a\tilde{b}+\tilde{b}a)\quad(1.6) AB=(a+ia~)(b+ib~)=(aba~b~)+i(ab~+b~a)(1.6)

待补充 22

1.3 一些术语和记号

在这里介绍下复数的现代术语和几号。这些概括在下表中,并在图1-4中绘出:

名称含义记号
z z z的模 z z z的长度 r r r ∣ z ∣ \lvert z\rvert z
z z z的幅角 z z z的角度 θ \theta θ arg ⁡ ( z ) \arg(z) arg(z)
z z z的实部 z z z x x x坐标 R e ( z ) Re(z) Re(z)
z z z的虚部 z z z y y y坐标 I m ( z ) Im(z) Im(z)
虚数 i i i的实数倍
实轴实数的集合
虚轴z虚数的集合
z的复共轭虚数的集合 z ˉ \bar{z} zˉ

在这里插入图片描述
用笛卡尔坐标(实部x与虚部y)把复数写成 z = x + i y z=x+iy z=x+iy只是标记方法之一。当我们处理复数的加法时,这是很自然的标记,因为(1.5)式说明A+B的实部和虚部正是由A和B的实部和虚部分别相加而得。

但是在乘法情况下,笛卡尔标记法就不再是自然的了,因为它给出拖沓而且没有启发性的法则(1.6)。简单的多的几何法则(1.2)使我们看得很清楚,我们应该用极坐标来表示一个典型的点: z : r = ∣ z ∣ , θ = arg ⁡ z z:r=|z|,\theta=\arg z z:r=z,θ=argz。我们现在可以把 z z z写作 z = r ∠ θ z=r\angle \theta z=rθ而不是 z = x + i y z=x+iy z=x+iy。这里符号 ∠ \angle 用于提醒我们 θ \theta θ z z z的角度。几何乘法法则(1.2)现在就有了简单的形式:

( R ∠ ϕ ) ( r ∠ θ ) = ( R r ) ∠ ( ϕ + θ ) ( 1.7 ) (R\angle\phi)(r\angle\theta)=(Rr)\angle(\phi+\theta)\quad(1.7) (Rϕ)(rθ)=(Rr)(ϕ+θ)(1.7)

和笛卡尔标记 x + i y x+iy x+iy一样,一个给定的极坐标标记 r ∠ θ r\angle\theta rθ就确定了一个唯一点,但是(与笛卡尔标记不同),一个给定的点并没有一个唯一的极坐标标记。因为任意两个相差 2 π 2\pi 2π整数倍的角度表示同样的方向,所以一个给定的点可以有无穷多个不同的标记:

⋯ = r ∠ ( θ − 4 π ) = r ∠ ( θ − 2 π ) = r ∠ θ = r ∠ ( θ + 2 π ) = r ∠ ( θ + 4 π ) = … \dots=r\angle(\theta-4\pi)=r\angle(\theta-2\pi)=r\angle\theta=r\angle(\theta+2\pi)=r\angle(\theta+4\pi)=\dots =r(θ4π)=r(θ2π)=rθ=r(θ+2π)=r(θ+4π)=

笛卡尔坐标和极坐标是标记复数最通常的方法,但是还可以有另一种特别有用的表示方式:“球极”坐标。

1.4 练习

1.5 符号算术和几何算术的等价性

之前我们一直在交替使用符号法则(1.5)、(1.6)与几何法则(1.1)、(1.2),现在我们要证明二者等价,因此这种交换使用是合理的。加法法则(1.1)与(1.5)的等价性在向量层面来解释是非常容易的,所以我们在后面仅讨论乘法法则(1.2)与(1.6)等价。

二、欧拉公式

待补充 27

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值