0 最优化问题数学概念补充

仿射集

仿射集相关定义与证明

给定空间的两个点 x 1 , x 2 ∈ R n x_1,x_2\in \mathbb{R}^n x1,x2Rn,我们可以确定一条过这两个点的直线:

y = θ x 1 + ( 1 − θ ) x 2 = x 2 + θ ( x 1 − x 2 ) y=\theta x_1+(1-\theta)x_2=x_2+\theta(x_1-x_2) y=θx1+(1θ)x2=x2+θ(x1x2)

也就是我们从 x 2 x_2 x2出发,沿着 x 1 − x 2 x_1-x_2 x1x2的方向任意变化 θ \theta θ值,这样就可以画出来整个一条直线。若我们想限定这条直线为线段,那么我们需要约束 θ ∈ [ 0 , 1 ] \theta\in[0,1] θ[0,1]

从上面的直线,我们引出仿射集 C C C的定义:

∀ x 1 , x 2 ∈ C , θ ∈ R , θ x 1 + ( 1 − θ ) x 2 ∈ C \forall x_1,x_2\in C,\theta\in R,\theta x_1+(1-\theta)x_2\in C x1,x2C,θRθx1+(1θ)x2C

即对任意 x 1 , x 2 ∈ C x_1,x_2\in C x1,x2C,若连接 x 1 , x 2 x_1,x_2 x1,x2的直线也在 C C C内,则集合 C C C是仿射集。显然一条直线是仿射集,但一个线段不是仿射集,整个的二维空间是一个仿射集,但是在二维空间内选择有限的一个区域不是一个仿射集。

仿射集的定义依赖于任意两点这个概念,那么如果我们将两个点扩充到三个点、四个点、无穷个点,然后对概念进行补充,就可以得到仿射组合这个概念:

设 x 1 , x 2 , … , x n ∈ C , θ 1 , θ 2 , … , θ n ∈ R , ∑ i = 1 k θ i = 1 , 那 么 我 们 将 θ 1 x 1 + θ 2 x 2 + ⋯ + θ n x n 称 为 仿 射 组 合 设x_1,x_2,\dots,x_n\in C,\quad\theta_1,\theta_2,\dots,\theta_n\in R,\sum\limits_{i=1}^k\theta_i=1,\\那么我们将\theta_1x_1+\theta_2x_2+\dots+\theta_nx_n称为仿射组合 x1,x2,,xnC,θ1,θ2,,θnR,i=1kθi=1θ1x1+θ2x2++θnxn仿

这本质是对仿射集的概念进行了扩展,如果一个集合是仿射集,那么我们从中选取任意 k k k个点,他们的仿射组合总是在集合 C C C内,当我们取 k = 2 k=2 k=2时该定义就退化为了仿射集线段的定义。

对仿射组合性质的证明:

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值