Middlebury数据集仅包含8个用于训练的图像对,其中使用四种不同技术生成真实的光流。位移非常小,通常低于10像素。
KITTI数据集较大(194个训练图像对)并且包括大位移,但仅包含非常特殊的运动类型。通过使用相机和3D激光扫描仪同时记录场景,从现实世界获得ground truth。这假定场景是刚性的,并且运动源于移动的观察者。而且,不能捕获远处物体的运动,例如天空,导致产生稀疏的光流。
Sintel 数据集从渲染的人工场景中获取ground truth,特别注意真实的图像属性。
flying chairs,作者从Flickr中检索964个分辨率为1024×768图像,分别来自城市类别(321),风景(129)和山峰(514)。将图像切割成4个象限,并使用512×384的裁剪图像作为背景。作为前景,将多个椅子的图像添加到背景中。从原始数据集中删除了非常相似的椅子,产生了809种椅子类型,每种有62个视图。为了生成运动,作者随机抽样背景和椅子的仿射变换参数。椅子的变换与背景变换有关,可以将其解释为相机和物体都在移动。使用变换参数,得出第二个图像、光流场和遮挡区域。
https://www.cnblogs.com/bupt213/p/11910531.html
The MPI-Sintel dataset: 是一个很有挑