BMR:基于Boostrapping多视图的虚假新闻检测

文章介绍了一种利用文本、图像结构和语义表示新闻的模型,通过iMMoE进行信息融合,强调自举和多视图技术。模型包含预处理、编码、融合和重新加权步骤,实验结果显示在信息挖掘和参数效率方面表现出色,尽管整体性能有待提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、概述

        文章提出了三种视图信息来表示一篇新闻:文本、图像结构、图像语义。然后设计了改进的多门混合专家系统(iMMoE)来进行信息融合。保留单模态信息来保证特征对新闻的保真性,增加的多模态信息能保证不同模态的一致性,从而提高整体模型的识别能力。

二、原理

        如文章标题所写,文章有两个关键点“Boostrapping”(中文直译为:自举)和“多视图”,其中,多视图指的是新闻的照片和文字两种模态所组成的4种特征,分别为单视图的图片结构特征(IP)、单视图的图片语义特征(IS)、单视图的文本特征(T)、将图片语义特征与文本特征结合的融合特征(CC)。

        然后自举实际上是一种集成学习的方法,一个专家系统(MoE),而文章对原来的专家系统技术进行了改进,加入了门结构后能够更好地控制专家们的输出,而且可以设计多套门结构来获取多个输出。文章将其命名为Improved MMoE(即iMMoE)。

三、模型架构

         文章总体的模型架构如上图所展示,接下来我们从左到右、从上到下,来看其框架。

1.Multi-view Feature Extraction

        Bayar Conv块是一种图形预处理方法,其能帮助后面的编码块(Image Pattern Analyzer)更关注图像的结构特征,忽视语义特征;DA块指的是数据增强模块,其对图片进行翻转、颜色变换来获得新的图片,从而让后面的编码块(Image Semantic Analyzer)更关注图片的语义信息。

        然后三个分析块(编码块)都是使用别人训练好的模型来对前面的数据进行编码,训练过程不调参。IP编码块使用预训练好的InceptionNet-V3来提取图像结构信息;IS编码块使用Masked Autoencoder

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值