CV 经典主干网络 (Backbone) 系列: VGGNet

本文介绍了VGGNet的网络结构及其在2014年ImageNet挑战赛上的突出表现。VGGNet以小卷积核(3x3)为特点,通过多层叠加实现深度,并利用1x1卷积增强非线性表达能力。此外,它还采用Multi-Scale方法提高训练效果,降低错误率。尽管现在已有更先进的网络,但VGGNet的贡献和设计理念仍然值得学习。
摘要由CSDN通过智能技术生成

CV 经典主干网络 (Backbone) 系列: VGGNet

作者:Karen Simonyan 等
发表时间:2014
Paper 原文:Very Deep Convolutional Networks for Large-Scale Image Recognition

该篇是 CV 经典主干网络 (Backbone) 系列 下的一篇文章。

这个模型在当年的 ImageNet 挑战赛上分别取得了检测和分类任务的第一和第二名的成绩。论文中提出了一系列网络结构,用的较多的是 VGG16 和 VGG19,当然到了今天(2021年)都已经很少用了。

1. 网络结构

现在来看这个网络结构还是非常简单明了的。

在这里插入图片描述

在但是 VGGNet 主要的突破在于:

  • 选用比较小的卷积核(3x3),而之前无论 AlexNet 还是 LeNet5 都是采用较大的卷积核,比如 11x11, 7x7。而采用小卷积核的意义主要有两点,一是在取得相同的感受野的情况下,比如两个3x3的感受野和一个5x5的感受野的大小相同,但是计算量却小了很多,关于这点原文中有很详细的解释,建议直接看原文;第二

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值