广义OOD检测最新综述

arXiv在2021年10月21日上传的论文**“Generalized Out-of-Distribution Detection: A Survey“,作者来自新加坡的南洋理工大学(NTU)和美国的威斯康星大学Madison分校**。
在这里插入图片描述
OOD检测对确保机器学习系统的可靠性和安全性至关重要,例如,在自动驾驶中,希望驾驶系统在检测以前从未见过异常场景或目标并且无法做出安全决策时,要发生警报并将控制权移交给人。(安全员)
OOD检测已经开发了大量的方法,从基于分类、基于密度到基于距离的方法。同时,其他几个问题在动机和方法论方面都与OOD检测密切相关,包括:异常检测(AD,anomaly detection)、新颖性检测((ND,novelty detection)、开放集识别(OSR,open set recognition)、和异常值检测(OD,outlier detection)、尽管有不同的定义和问题设置,这些问题经常使大家感到困惑。
该技术提出了一个广义的OOD检测的通用框架,包括上述五个问题,即:AD、ND、OSR、OOD检测和OD,这五个问题可以看作该框架的特例和子任务。
现有的机器学习模型大多基于封闭世界假设进行训练的,其中假设测试数据是来自与训练数据相同的分布,称为:in-distribution (ID)。然而,当模型部署在开放世界场景中,测试样本可能是OOD,分布漂移可能是由语义漂移(例如:OOD样本来自不同的类),或**Covariate shift(**例如、来自不同域的OOD样本)引起,这里主要讨论语义漂移检测的。
综述聚焦于计算机视觉和基于深度学习方法,基本分成4个类:

  • 基于密度的方法
  • 基于重建的方法
  • 基于分类的方法
  • 基于距离的方法。
    如图是本文提出的广义OOD检测框架:包括 anomaly 检测 (AD), novelty 检测 (ND), open set 识别 (OSR), out-of- distribution 检测 (OOD)和outlier 检测 (OD) 。
    在这里插入图片描述

异常检测(AD)

  • AD旨在检测在测试期间偏离预定义正态性的任何异常样本。 偏差可能由于covariate shift或语义漂移而发生,同时假设其他分布漂移不存在。 这带来两个子任务:感官 AD 和语义 AD

  • 感官AD 检测 covariate shift 的测试样本,基于正态性来自相同协变量分布的假设。语义 AD 检测有标签漂移的测试样本,基于正态性来自相同的语义分布(类别)假设,即正态性应该只属于一个类。

  • 感官AD 仅关注具有相同或相似语义的目标,并识别其表面的观测差异。 具有感官差异的样品被识别为感官异常。 示例应用包括对抗防卫、biometrics和艺术品的伪造识别、图像取证、工业检查等。一种流行的现实世界 AD 基准是用于工业检测的 MVTec。

  • 与感觉 AD 相比**,语义 AD 只关注语义漂移**,不存在covariate shift。 实际应用的一个例子是犯罪监控。 特定类的活跃图像爬虫也需要语义 AD 方法来确保收集的图像纯度

新颖性检测(ND)

ND旨在检测不属于任何训练类别的任意测试样本。 检测的新样本通常是为未来的建设性程序准备,例如更专业的分析,或模型本身的步进学习(incremental learning)。 根据训练类数目,ND 包含两种不同的设置: 1)只一个类的新颖性检测(one-class ND); 2)多个类新颖性检测(multi-class ND)。 值得注意的是,尽管有很多in-distribution(ID)类,但多个类 ND 的目标只是将新样本与in-distribution区分开来。 一个类ND和多个类 ND 都被表述为二元分类问题

真实世界的 ND 应用包括视频监控、行星探索和步进学习

开放集识别(OSR)

OSR要求多分类器,

  • 同时准确分类来自已知的已知类,的测试样本,以及
  • 同时检测来自,未知的未知类的测试样本
  • OSR通常支持真实世界图像分类器的稳健部署,其拒绝开放世界的未知样本

OOD检测

OOD检测旨在检测相对训练数据不重复标签的测试样本,形式上,OOD检测设置中的测试样本来自in-distribution(ID)语义飘移分布, 这个in-distribution(ID)数据可以包含单个类或多个类。 当训练中存在多个类时,OOD 检测不应损害其in-distribution(ID)数据分类能力

OOD检测的应用通常属于安全-紧要的情况,例如、自动驾驶、在构建算法基准时,OOD数据集不应该与in-distribution(ID)数据集有标签重叠

异常值检测(OD)

  • OD旨在检测由于covariate shift或语义漂移与给定观察集中其他样本明显不同的样本。

  • 虽然OD主要应用于数据挖掘任务,但也用于现实世界的计算机视觉应用,如视频监控和数据集清理。 数据集清理的应用,OD通常用作主要任务的预处理步骤,例如从开放集噪声标签中学习、微监督学习(webly supervised learning)和开放集半监督学习。

  • 如图是广义OOD检测框架的实例问题设置概览:
    在这里插入图片描述
    尽管 OSR 和实际使用具有关联性,但仍然存在一些限制,比如在训练期间不允许额外的数据,以及对理论开放风险界限的必要保证。这些限制排除了更注重有效性改进但可能违反 OSR 约束的方法。另一方面,OOD 检测包含更广泛的学习任务和解决方案空间

有趣的是**,异常值检测(OD)任务可以被视为广义 OOD 检测框架中的异常值**,因为异常值检测器(OD)是给定所有观察值,而不是遵循训练-测试方案。此外,在最近的深度学习领域很少看到这个主题的文章发表。然而,从直观上讲异常值也属于一种OOD

相关领域题目由如下5个领域:

  • 带拒绝的学习
  • 域自适应和域泛化。
  • 新颖性发现
  • 零样本学习
  • 开放世界识别(持续学习)

总结

慢慢的将OOD检测,全部都搞透彻,研究OOD的策略及其深入研究OOD的识别方案,用到了在进行补充与全部将其搞定都行啦的理由与打算。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
ood数据检测方法是一种用于检测模型对于未见过的(out-of-distribution,OOD)数据的方法。在机器学习中,模型的性能通常是通过在训练集上的表现来评估的。然而,训练集往往只是整个数据分布的子集,模型在其他未见过的数据上的表现可能会出现较差的情况。因此,为了提高模型的泛化能力和鲁棒性,研究人员开始关注如何有效地检测和处理OOD数据。 研究背景包括以下几个方面。首先,现实世界中的数据分布通常非常复杂,包含各种未见过的变化和异常情况。如果模型只能处理已经在训练过程中见过的数据,那么它在面对未知变化时可能会出现错误的预测结果,从而导致严重的问题。其次,为了满足实际应用的需求,模型需要能够对OOD数据进行准确的识别和分类,而不仅仅是将其误认为训练集中的某一类别。 在过去的几年里,研究人员提出了许多方法用于OOD数据检测。这些方法包括但不限于基于置信度的方法、生成对抗网络(GANs)和可变性估计。基于置信度的方法通过对模型的输出概率进行分析来判断输入是否为OOD数据。GANs则通过训练一个生成器网络来模拟训练数据的分布,并利用生成器网络与模型的输出之间的差异来检测OOD数据。可变性估计方法则通过度量模型对于输入数据的不确定性来判断输入是否为OOD数据。 总之,OOD数据检测方法的研究背景是模型在面对未见过的数据时可能出现性能下降的问题。为了提高模型的泛化能力和鲁棒性,研究人员提出了各种方法用于有效地检测和处理OOD数据。这些方法的应用有助于提高模型在现实世界中的应用能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

big_matster

您的鼓励,是给予我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值