HIC-Yolov5 改进yolov5涨点

论文HIC-YOLOv5提出改进YOLOv5的FPN结构、引入注意力机制和数据增强策略,以提升小物体检测性能。实验结果显示,在多个数据集上,HIC-YOLOv5的mAP得分显著提高,证实了这些改进的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

"HIC-YOLOv5: Improved YOLOv5 For Small Object Detection" 这篇论文提出了一种基于YOLOv5的目标检测模型改进方案,主要用于提升对小物体的检测性能。

1. 研究背景

在目标检测任务中,小物体检测一直是一个具有挑战性的问题。由于小物体在图像中占据的像素较少,其特征信息相对较少,导致模型难以准确识别。而YOLOv5作为一种高效的目标检测模型,虽然在大多数情况下表现良好,但在处理小物体时仍存在一定的不足。因此,该论文提出了一种针对小物体检测的改进方案,以提高YOLOv5对小物体的检测性能。

2. 方法介绍

2.1 特征金字塔网络(FPN)的改进

论文首先分析了YOLOv5中的特征金字塔网络(FPN),发现其存在对小物体特征提取不足的问题。为了解决这一问题,论文提出了一种改进的FPN结构,即HIC-FPN(Hierarchical and Interactive Context-aware FPN)。HIC-FPN通过引入层次化和交互式的上下文信息,增强了模型对小物体特征的提取能力。

2.2 注意力机制的引入

为了提高模型对小物体的关注度,论文引入了注意力机制。具体而言,论文在HIC-FPN的基础上,加入了卷积自注意力模块(Convolutional Self-Attentio

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tofu Intelligence

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值