大模型元年最热门的AI岗位,现在已经过气了——
提示词工程师,不用写代码、不限专业、不要求学历,只需研究如何和AI聊天,就能在2023年拿到25-33万美元年薪。
但如今,它已经沦为企业最不愿意扩增的岗位之一。
微软一项涉及31000名员工的调查显示,提示词工程师已经成为公司未来12-18个月内倒数第二不想新增的岗位。
同时在招聘平台(Indeed)上,提示词工程师的检索次数也在经历了过山车式变化。
- 2023年1月,每百万次搜索中只有2次为搜索提示词工程师。
- 2023年4月这一数字暴增到144次/百万次。
- 如今已归于平静,大概保持在20-30次/百万次。
要知道,当年这一新岗位可是得到了OpenAI奥特曼和AI大神卡帕西的共同认可。
2年时间过去,懂提示词工程确实依旧是项技能,但衍生出的岗位却已经不那么刚需了。
搞AI课程培训的高管表示:
无论你是财务、HR还是法务,懂提示词工程已经是一种基本的职业技能,而不是需要再专门招一个岗位。
提示工程已成基本必备技能
梳理现状,提示词工程领域现在呈现出三个新趋势:
1、AI可以自动化提示词工程
2、普通人上手门槛变低
3、企业需要更加复合型人才
最初,提示词工程师的工作内容被定义为“用合适的描述让AI发挥出最大的潜力”。
最早一批开设该岗位的AI公司包括Anthropic,也就是Claude打造者。
2023年3月,他们为提示词工程师提供25-33万美元年薪,具体要求比较抽象,包括有黑客精神、喜欢解密、善于沟通、能让模棱两可的问题变清晰等。
仅有的硬性要求就是具备基本编程和QA技能,熟悉大模型的架构和运转。
但2年后,Anthropic招聘中已经不见提示工程师踪影。
同时还推出了可以快速优化提示词的工具Prompt Improver。
它能够自动写提示词或者优化提示词,不仅能帮助开发者快速从其他模型上迁移至Claude,更能进一步提高企业级AI开发的效率。
无独有偶,谷歌也在前段时间发布了提示词工程白皮书,向非技术有用户传授提示词诀窍。
这意味着,技术厂商正在通过标准化工具,让提示词工程的门槛进一步降低。哪怕是纯小白,也能基于如上这类工具/方案,搞定基础的提示工程问题。
从更宏观的层面来看,企业们如今对于提示词工程师的需求也在普遍降低。
一份由微软委托的调查显示,提示词工程师已经成为企业最不愿意扩增的岗位之一(倒数第二名),大家更希望招聘AI训练师、AI数据专家以及AI安全专家等岗位。
人力资源公司Xpheno的招聘业务主管表示,AI行业对于提示词工程师的需求正在逐渐趋于平缓,全球范围过去三个季度几乎持平。
市场更需要懂提示词工程的复合型人才。
比如对基础模型、AI安全治理、数据和云计算都更了解的人才。从长远来看,对纯提示词工程师的需求可能会逐渐减少。
但现阶段,市面上依旧有提示词工程师的招聘需求。
在猎聘上,如今依旧给提示词工程师开出高额薪资的企业,更多集中在垂直行业领域,或者是服务于垂直行业的技术提供商。
他们招聘的提示词工程师,也需要更懂行业。
比如格灵深瞳的招聘中,明确提及该岗位需要深入了解政务业务知识。
总之在短期内,提示词工程师这一岗位不会完全消失。
但它还能存在多久?这可能要取决于AI的进化速度了。
未来,每个人都要懂提示工程
其实在提示工程师爆火时,就有人提出了这一岗位存在底层逻辑——AI还不够聪明。
当时的大模型智能水平有限,往往需要精心设计的提示词,才能给出用户想要的回答。
2年过去,当时最强悍的GPT-4都被OpenAI从ChatGPT上下架了,大模型的智能水平已经不可同日而语,无需完美提示词,模型也能给出更好回答。
与此同时,通过一些简单的交互设计,大模型也能更精准理解用户的问题。
比如模型会进一步追问,帮助用户细化需求。
又或者,它会自动对用户的问题进行提示词优化。比如结合上下文、增加细节等。
此外还有一个趋势不容忽视,AI正在朝着更加个性化的趋势发展。
随着用户和AI的交流越来越多,每个人都能形成一个自己的知识库,AI也会越来越像私人助理。在这种时候,AI对用户有了更深入的理解,通用化的提示词工程或许也就变得不再实用了。
最后,AI也在逐渐渗透到每个人的日常工作生活中。就以国内的DeepSeek热潮为例,和AI对话已经变得不再稀奇,企业也开始拥抱AI浪潮,进行新一轮智能化升级。
几乎可以预见,未来人们使用AI,就像现在使用office一样平常。
那,还需要花大价钱招聘提示词工程师吗?
显然是更全面的打工人更有性价比啊(doge)。
你觉得呢?
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。