Multimodal Sequence to Sequence Models for Sentiment Analysis 笔记

多模态seq2seq模型做情感分析

主要想法:

将两个模态的time_step对齐,之后训练seq2seq模型。其中一个模态作为输入,另一个作为标签,用交叉熵进行训练。用lstm做encoder和decoder,encoder得到的hidden layers认为是两个模态语义的融合。

之后利用训练好的seq2seq模型的encoder得到hidden layer作为模态融合的语义表示,过rnn进行情感值预测。

如果不进行对齐的话,用标准的seq2seq模型得到中间语义向量,但是过encoder的时候,每一次的输入是h(t-1)和xt做attention之后的向量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值