[课程笔记]非参数统计Chapter 1 一些基本概念

课程笔记:非参数统计
参考教材:《非参数统计(第二版)》,王星,褚挺进,清华大学出版社
《应用非参数统计》薛留根,科学出版社

Chapter1 基本概念

次序统计量

定义 1.1 1.1 \quad 1.1 假设总体 X X X 有容量为 n n n 的样本 X 1 , X 2 , ⋯   , X n , X_{1}, X_{2}, \cdots, X_{n}, X1,X2,,Xn, X 1 , X 2 , ⋯   , X n X_{1}, X_{2}, \cdots, X_{n} X1,X2,,Xn 按从小到大排序后生成统计量
X ( 1 ) ⩽ X ( 2 ) ⩽ ⋯ ⩽ X ( n ) X_{(1)} \leqslant X_{(2)} \leqslant \cdots \leqslant X_{(n)} X(1)X(2)X(n)
则称统计量 { X ( 1 ) , X ( 2 ) , ⋯   , X ( n ) } \left\{X_{(1)}, X_{(2)}, \cdots, X_{(n)}\right\} {X(1),X(2),,X(n)} 为顺序统计量. 其中 X ( i ) X_{(i)} X(i) 是第 i i i 个顺序统计量. 顺序统计量是非参数统计的理论基础之一, 许多非参数统计量的性质与顺序统计量 有关。

  • 如果总体分布函数为 F ( x ) , F(x), F(x), 则贝序统计呈 X ( r ) X_{(r)} X(r) 的分布函数为

F r ( x ) = P ( X ( r ) ⩽ x ) = P (  至少  r  个  X i  小于或等于  x ) = ∑ i = r n ( n i ) F i ( x ) [ 1 − F ( x ) ] n − i . F_{r}(x)=P\left(X_{(r)} \leqslant x\right)=P\left(\text { 至少 } r \text { 个 } X_{i} \text { 小于或等于 } x\right) =\sum_{i=r}^{n}\left(\begin{array}{l} n \\ i \end{array}\right) F^{i}(x)[1-F(x)]^{n-i} . Fr(x)=P(X(r)x)=P( 至少 r  Xi 小于或等于 x)=i=rn(ni)Fi(x)[1F(x)]ni.

  • 如果总体分布密度 f ( x ) f(x) f(x) 存在, 则顺序统计量 X ( r ) X_{(r)} X(r) 的密度函数为:

f r ( x ) = n ! ( r − 1 ) ! ( n − r ) ! F r − 1 ( x ) f ( x ) [ 1 − F ( x ) ] n − r f_{r}(x)=\frac{n !}{(r-1) !(n-r) !} F^{r-1}(x) f(x)[1-F(x)]^{n-r} fr(x)=(r1)!(nr)!n!Fr1(x)f(x)[1F(x)]nr

分位数

定义 1.2 1.2 \quad 1.2 假定 X X X 服从概率密度为 f ( x ) f(x) f(x) 的分布, 令 0 < p < 1 , 0<p<1, 0<p<1, 满足等式 F ( m p − ) = P ( X < m p ) ⩽ p , F ( m p ) = P ( X ⩽ m p ) ⩾ p F\left(m_{p}^{-}\right)=P\left(X<m_{p}\right) \leqslant p, F\left(m_{p} \right)=P\left(X \leqslant m_{p}\right) \geqslant p F(mp)=P(X<mp)p,F(mp)=P(Xmp)p 唯一的根 m p m_{p} mp 称为分布 F ( x ) F(x) F(x)
p p p 分位数.

例如, 中位数可以定义为 P ( X < m 0.5 ) ⩽ 1 / 2 , P ( X ⩽ m 0.5 ) ⩾ 1 / 2. P\left(X<m_{0.5}\right) \leqslant 1 / 2, P\left(X \leqslant m_{0.5}\right) \geqslant 1 / 2 . P(X<m0.5)1/2,P(Xm0.5)1/2. 分布的 3 / 4 3 / 4 3/4
分位数定义为 P ( X < m 0.75 ) ⩽ 0.75 , P ( X ⩽ m 0.75 ) ⩾ 0.75. P\left(X<m_{0.75}\right) \leqslant 0.75, P\left(X \leqslant m_{0.75}\right) \geqslant 0.75 . P(X<m0.75)0.75,P(Xm0.75)0.75.

这样定义的 p p p 分位数不唯一. 易证: 如果分布的 p p p 分位数不唯一, 则它充满一 个有界闭区间.

为了解决唯一性问题, 统计学家又把总体的 p p p 分位数定义为
ξ p = inf ⁡ { x : F ( x ) ⩾ p } , p ∈ ( 0 , 1 ) \xi_{p}=\inf \{x: F(x) \geqslant p\}, \quad p \in(0,1) ξp=inf{x:F(x)p},p(0,1)
p = 1 / 2 p=1 / 2 p=1/2 时, ξ 1 / 2 \xi_{1 / 2} ξ1/2 为分布的中位数.

样本分位数

定义 1.2.1 1.2 .1 \quad 1.2.1 X 1 , ⋯   , X n X_{1}, \cdots, X_{n} X1,,Xn 是来自总体 F ( x ) F(x) F(x) 的独立同分布样本, 其经验分布 函数记为 F n ( x ) = n − 1 ∑ i = 1 n I ( X i ⩽ x ) , F_{n}(x)=n^{-1} \sum_{i=1}^{n} I\left(X_{i} \leqslant x\right), Fn(x)=n1i=1nI(Xix), 则称
ξ ^ n , p = inf ⁡ { x : F n ( x ) ⩾ p } \hat{\xi}_{n, p}=\inf \left\{x: F_{n}(x) \geqslant p\right\} ξ^n,p=inf{x:Fn(x)p}
为样本的 p p p 分位数.

对于 ξ ^ n , p , \hat{\xi}_{n, p}, ξ^n,p, 有下面两个渐近性质.

定理 1.2.1 1.2.1\quad 1.2.1 设总体分布 F ( x ) F(x) F(x) 的密度函数 f ( x ) f(x) f(x) ξ p \xi_{p} ξp 处连续, 且 f ( ξ p ) > 0 , f\left(\xi_{p}\right)>0, f(ξp)>0, 则样本分位数 ξ ^ n , p \hat{\xi}_{n, p} ξ^n,p 有渐近正态分布 N ( ξ p , p ( 1 − p ) / [ n f 2 ( ξ p ) ] ) . N\left(\xi_{p}, p(1-p) /\left[n f^{2}\left(\xi_{p}\right)\right]\right) . N(ξp,p(1p)/[nf2(ξp)]).

定理 1.2.2 1.2 .2 \quad 1.2.2 0 < p < 1 , ξ p 0<p<1, \xi_{p} 0<p<1,ξp 是满足 F ( x ) ⩾ p , F ( x − 0 ) ⩽ p F(x) \geqslant p, F(x-0) \leqslant p F(x)p,F(x0)p 的总体 F ( x ) F(x) F(x) p p p 分位数. 如果 ξ p \xi_{p} ξp 是唯一的, 则当 n → ∞ n \rightarrow \infty n , ξ ^ n , p → ξ p ,  a.s.  . , \hat{\xi}_{n, p} \rightarrow \xi_{p}, \text { a.s. } . ,ξ^n,pξp, a.s. .

分位数区间估计

  1. 大样本区间估计
    在大样本情形下, 我们可以利用样本 p p p 分位数 ξ ^ n , p \hat{\xi}_{n, p} ξ^n,p 的渐近正态性构造置信区
    间. 给定置信水平 α > 0 , \alpha>0, α>0, z 1 − α / 2 z_{1-\alpha / 2} z1α/2 表示满足 Φ ( z 1 − α / 2 ) = 1 − α / 2 \Phi\left(z_{1-\alpha / 2}\right)=1-\alpha / 2 Φ(z1α/2)=1α/2 的数, 它是标准 正态分布的 1 − α / 2 1-\alpha / 2 1α/2 分位数. 由定理 1.2 .1 知
    lim ⁡ n → ∞ P { ∣ ξ ^ n , p − ξ p ∣ ⩽ z 1 − α / 2 p ( 1 − p ) n f ( ξ p ) } = 1 − α \lim _{n \rightarrow \infty} P\left\{\left|\hat{\xi}_{n, p}-\xi_{p}\right| \leqslant \frac{z_{1-\alpha / 2} \sqrt{p(1-p)}}{\sqrt{n} f\left(\xi_{p}\right)}\right\}=1-\alpha nlimP{ξ^n,pξpn f(ξp)z1α/2p(1p) }=1α
    上式尚不能直接用于区间估计, 因为其中 f ( ⋅ ) f(\cdot) f() ξ p \xi_{p} ξp 皆未知. ξ p \xi_{p} ξp 可用 ξ ^ n , p \hat{\xi}_{n, p} ξ^n,p 估计, 至 于 f ( ⋅ ) , f(\cdot), f(), 需用概率密度的非参数估计法估计之. 以 f ^ n ( ⋅ ) \hat{f}_{n}(\cdot) f^n() f ( ⋅ ) f(\cdot) f() 的一个估计, 如果 f ^ n ( ⋅ ) \hat{f}_{n}(\cdot) f^n() 有相合性, 则利用上式有
    lim ⁡ n → ∞ P { ∣ ξ ^ n , p − ξ p ∣ ⩽ z 1 − α / 2 p ( 1 − p ) n f ^ n ( ξ ^ n , p ) } = 1 − α \lim _{n \rightarrow \infty} P\left\{\left|\hat{\xi}_{n, p}-\xi_{p}\right| \leqslant \frac{z_{1-\alpha / 2} \sqrt{p(1-p)}}{\sqrt{n} \hat{f}_{n}\left(\hat{\xi}_{n, p}\right)}\right\}=1-\alpha nlimPξ^n,pξpn f^n(ξ^n,p)z1α/2p(1p) =1α
    上式表明, ξ ^ n , p ± z 1 − α / 2 p ( 1 − p ) / [ n f ^ n ( ξ ^ n , p ) ] \hat{\xi}_{n, p} \pm z_{1-\alpha / 2} \sqrt{p(1-p)} /\left[\sqrt{n} \hat{f}_{n}\left(\hat{\xi}_{n, p}\right)\right] ξ^n,p±z1α/2p(1p) /[n f^n(ξ^n,p)] ξ p \xi_{p} ξp 的一个区间估计, 其渐近置信
    水平为 1 − α , 1-\alpha, 1α, 这个估计只有在样本容量 n n n 相当大时才有用, 因为 n n n 太小时, 概率 密度 f ( ⋅ ) f(\cdot) f() 不易估计准确.

  2. 小样本区间估计
    X 1 , ⋯   , X n X_{1}, \cdots, X_{n} X1,,Xn 是来自连续分布 F ( x ) F(x) F(x) 的一个样本. X ( 1 ) ⩽ ⋯ ⩽ X ( n ) X_{(1)} \leqslant \cdots \leqslant X_{(n)} X(1)X(n) 为样本 次序统计量. 下面求 p p p 分位数 ξ p \xi_{p} ξp 的形如 [ X ( r ) , X ( s ) ] \left[X_{(r)}, X_{(s)}\right] [X(r),X(s)] 的置信区间, 即求最大整数 r r r 和最小整数 s , s, s, 使得
    P { X ( r ) ⩽ ξ p ⩽ X ( s ) } ⩾ 1 − α P\left\{X_{(r)} \leqslant \xi_{p} \leqslant X_{(s)}\right\} \geqslant 1-\alpha P{X(r)ξpX(s)}1α
    为此, 记 Y = ∑ i = 1 n I ( X i ⩽ ξ p ) , Y=\sum_{i=1}^{n} I\left(X_{i} \leqslant \xi_{p}\right), Y=i=1nI(Xiξp), 显然 Y Y Y 服从二项分布 B ( n , p ) , B(n, p), B(n,p), 其中 p = P { X i ⩽ ξ p } . p=P\left\{X_{i} \leqslant \xi_{p}\right\} . p=P{Xiξp}.

注意到事件 { X ( r ) ⩽ ξ p ⩽ X ( s ) } \left\{X_{(r)} \leqslant \xi_{p} \leqslant X_{(s)}\right\} {X(r)ξpX(s)} 等价于事件“样本 X 1 , ⋯   , X n X_{1}, \cdots, X_{n} X1,,Xn 中小于等于 ξ p \xi_{p} ξp 的个 数至少火 r r r 且至多火 s s s ", 即等价于事件 { r ⩽ Y ⩽ s } . \{r \leqslant Y \leqslant s\} . {rYs}. 囚此,
P { X ( r ) ⩽ ξ p ⩽ X ( s ) } = P { r ⩽ Y ⩽ s } = P { Y ⩽ s } − P { Y < r } = ∑ i = 0 s ( n i ) p i ( 1 − p ) n − i − ∑ i = 0 r − 1 ( n i ) p i ( 1 − p ) n − i . \begin{aligned} & P\left\{X_{(r)} \leqslant \xi_{p} \leqslant X_{(s)}\right\} \\ =& P\{r \leqslant Y \leqslant s\}=P\{Y \leqslant s\}-P\{Y<r\} \\ =& \sum_{i=0}^{s}\left(\begin{array}{l} n \\ i \end{array}\right) p^{i}(1-p)^{n-i}-\sum_{i=0}^{r-1}\left(\begin{array}{l} n \\ i \end{array}\right) p^{i}(1-p)^{n-i} . \end{aligned} ==P{X(r)ξpX(s)}P{rYs}=P{Ys}P{Y<r}i=0s(ni)pi(1p)nii=0r1(ni)pi(1p)ni.
在实际工作中, 我们可以选取最大的 r r r 和最小的 s , s, s, 使得
∑ i = 0 r − 1 ( n i ) p i ( 1 − p ) n − i ⩽ α 2 ∑ i = 0 s ( n i ) p i ( 1 − p ) n − i ⩾ 1 − α 2 . \begin{array}{l} \sum_{i=0}^{r-1}\left(\begin{array}{l} n \\ i \end{array}\right) p^{i}(1-p)^{n-i} \leqslant \frac{\alpha}{2} \\ \sum_{i=0}^{s}\left(\begin{array}{l} n \\ i \end{array}\right) p^{i}(1-p)^{n-i} \geqslant 1-\frac{\alpha}{2} . \end{array} i=0r1(ni)pi(1p)ni2αi=0s(ni)pi(1p)ni12α.
因此
P { X ( r ) ⩽ ξ p ⩽ X ( s ) } ⩾ 1 − α 2 − α 2 = 1 − α P\left\{X_{(r)} \leqslant \xi_{p} \leqslant X_{(s)}\right\} \geqslant 1-\frac{\alpha}{2}-\frac{\alpha}{2}=1-\alpha P{X(r)ξpX(s)}12α2α=1α

秩检验统计量

无节点

设样本 X 1 , X 2 , … , X n X_{1}, X_{2}, \ldots, X_{n} X1,X2,,Xn 是取自总体 X X X 的简单随机样本, X 1 , X 2 , … , X n X_{1}, X_{2}, \ldots, X_{n} X1,X2,,Xn 中不超过 X i X_{i} Xi 的个数
R i = ∑ j = 1 n I ( X j ≤ X i ) R_{i}=\sum_{j=1}^{n} I\left(X_{j} \leq X_{i}\right) Ri=j=1nI(XjXi)
R i R_{i} Ri X i X_{i} Xi 的秩, X i X_{i} Xi 是第 R i R_{i} Ri 个顺序统计量, X ( R i ) = X i ∘ X_{\left(R_{i}\right)}=X_{i \circ} X(Ri)=Xi R = ( R 1 , … , R n ) , R R=\left(R_{1}, \ldots, R_{n}\right), R R=(R1,,Rn),R 是由样本产生的统计量称为秩统计量。

定理 1.3 1.3\quad 1.3 对于简单随机样本, R = ( R 1 , R 2 , ⋯   , R n ) R=\left(R_{1}, R_{2}, \cdots, R_{n}\right) R=(R1,R2,,Rn) 寸可組取 ( 1 , 2 , ⋯   , n ) (1,2, \cdots, n) (1,2,,n) 脉 任意 n ! n ! n! 个排列之一, R R R 在由 ( 1 , 2 , ⋯   , n ) (1,2, \cdots, n) (1,2,,n) 的所有可能的排列组成的空间上是均匀 分付, 即: 对 ( 1 , 2 , ⋯   , n ) (1,2, \cdots, n) (1,2,,n) 的任一排列 ( i 1 , i 2 , ⋯   , i n ) \left(i_{1}, i_{2}, \cdots, i_{n}\right) (i1,i2,,in)
P ( R = ( i 1 , i 2 , ⋯   , i n ) ) = 1 n ! P\left(R=\left(i_{1}, i_{2}, \cdots, i_{n}\right)\right)=\frac{1}{n !} P(R=(i1,i2,,in))=n!1

上面定理 1.3 给出的是 R 1 , R 2 , ⋯   , R n R_{1}, R_{2}, \cdots, R_{n} R1,R2,,Rn 联合分布. 类似地, 每一个 R i R_{i} Ri 在空间 { 1 , 2 , ⋯   , n } \{1,2, \cdots, n\} {1,2,,n} 上有均匀分布: 每一对 ( R i , R j ) \left(R_{i}, R_{j}\right) (Ri,Rj) 在空间 { ( r , s ) : r , s = 1 , 2 , ⋯   , n ; r ≠ s } \{(r, s): r, s=1,2, \cdots, n ; r \neq s\} {(r,s):r,s=1,2,,n;r=s}
上有均匀分布. 以推论的形式表示如下。
推论 1.2 1.2 \quad 1.2 对于简单随机样本, 对任意 r , s = 1 , 2 , ⋯   , n ; r ≠ s r, s=1,2, \cdots, n ; r \neq s r,s=1,2,,n;r=s i ≠ j , i \neq j, i=j,
P ( R i = r ) = 1 n , P ( R i = r , R j = s ) = 1 n ( n − 1 ) P\left(R_{i}=r\right)=\frac{1}{n}, \quad P\left(R_{i}=r, R_{j}=s\right)=\frac{1}{n(n-1)} P(Ri=r)=n1,P(Ri=r,Rj=s)=n(n1)1
推论 1.3 对于简单随机样本,
E ( R i ) = n + 1 2 var ⁡ ( R i ) = ( n + 1 ) ( n − 1 ) 12 cov ⁡ ( R i , R j ) = − n + 1 12 \begin{aligned} E\left(R_{i}\right) &=\frac{n+1}{2} \\ \operatorname{var}\left(R_{i}\right) &=\frac{(n+1)(n-1)}{12} \\ \operatorname{cov}\left(R_{i}, R_{j}\right) &=-\frac{n+1}{12} \end{aligned} E(Ri)var(Ri)cov(Ri,Rj)=2n+1=12(n+1)(n1)=12n+1

有节点

在许多情况下, 数据中有重复数据, 称数据中存在结 (tie). 结的定义如下.
定义 : 设样本 X 1 , X 2 , ⋯   , X n X_{1}, X_{2}, \cdots, X_{n} X1,X2,,Xn 取自总体 X X X 的简单随机抽样, 将数据排序后, 相同的数据点组成一个“结”,称重复数据的个数为结长. 假设有样本量为 7 的数据:
3.8 3.2 1.2 1.2 3.4 3.2 3.2 \begin{array}{lllllll} 3.8 & 3.2 & 1.2 & 1.2 & 3.4 & 3.2 & 3.2 \end{array} 3.83.21.21.23.43.23.2
其中有 4 个结, x 2 = x 6 = x 7 = 3.2 , x_{2}=x_{6}=x_{7}=3.2, x2=x6=x7=3.2, 结长 3 ; x 3 = x 4 = 1.2 , 3 ; x_{3}=x_{4}=1.2, 3;x3=x4=1.2, 结长 2 ; x 1 = 3.8 2 ; x_{1}=3.8 2;x1=3.8 x 5 = x_{5}= x5= 3.4 均结长都为 1. 1 . 1. 如果有重复数据, 则将数据从小到大排序后, ( R 1 , R 2 ) = ( 1 , 2 ) , \left(R_{1}, R_{2}\right)=(1,2), (R1,R2)=(1,2), 也可以等于 ( 2 , 1 ) , (2,1), (2,1), 这样秩就不唯一。一般常采用秩平均方法处理有结数据的秩.

定义 : 将样本 X 1 , X 2 , ⋯   , X n X_{1}, X_{2}, \cdots, X_{n} X1,X2,,Xn 从小到大排序后, 如果 X ( 1 ) = ⋯ = X ( τ 1 ) < X_{(1)}=\cdots=X_{\left(\tau_{1}\right)}< X(1)==X(τ1)<
X ( τ 1 + 1 ) = ⋯ = X ( τ 1 + τ 2 ) < ⋯ < X ( τ 1 + ⋯ + τ g − 1 ) = ⋯ = X ( τ 1 + ⋯ + τ g ) , X_{\left(\tau_{1}+1\right)}=\cdots=X_{\left(\tau_{1}+\tau_{2}\right)}<\cdots<X_{\left(\tau_{1}+\cdots+\tau_{g-1}\right)}=\cdots=X_{\left(\tau_{1}+\cdots+\tau_{g}\right)}, X(τ1+1)==X(τ1+τ2)<<X(τ1++τg1)==X(τ1++τg), 其中

  • 是样 本中结的个数, τ i \tau_{i} τi 是第 i i i 个结的长度, ( τ 1 , τ 2 , ⋯   , τ g ) \left(\tau_{1}, \tau_{2}, \cdots, \tau_{g}\right) (τ1,τ2,,τg) g g g 个正整数, ∑ i = 1 g τ i = n , \sum_{i=1}^{g} \tau_{i}=n, i=1gτi=n, ( τ 1 , τ 2 , ⋯   , τ g ) \left(\tau_{1}, \tau_{2}, \cdots, \tau_{g}\right) (τ1,τ2,,τg) 为结统计量. 第 i i i 组样本的秩都相同,是第 i i i 组样本原秩的平均,如 下所示:

r i = 1 τ i ∑ k = 1 τ i ( τ 1 + ⋯ + τ i − 1 + k ) = τ 1 + ⋯ + τ i − 1 + 1 + τ i 2 r_{i}=\frac{1}{\tau_{i}} \sum_{k=1}^{\tau_{i}}\left(\tau_{1}+\cdots+\tau_{i-1}+k\right)=\tau_{1}+\cdots+\tau_{i-1}+\frac{1+\tau_{i}}{2} ri=τi1k=1τi(τ1++τi1+k)=τ1++τi1+21+τi

U统计量

单样本U统计量

  • 定义: 设 X 1 , X 2 , ⋯   , X n X_{1}, X_{2}, \cdots, X_{n} X1,X2,,Xn 取自分布族 F = { F ( θ ) , θ ∈ Θ } , \mathcal{F}=\{F(\theta), \theta \in \Theta\}, F={F(θ),θΘ}, 如果待估参数 θ \theta θ 存在样本量为 k k k 的无偏估计量 h ( X 1 , X 2 , ⋯   , X k ) , k < n , h\left(X_{1}, X_{2}, \cdots, X_{k}\right), k<n, h(X1,X2,,Xk),k<n, 即满足

E h ( X 1 , X 2 , ⋯   , X k ) = θ , ∀ θ ∈ θ E h\left(X_{1}, X_{2}, \cdots, X_{k}\right)=\theta, \quad \forall \theta \in \theta Eh(X1,X2,,Xk)=θ,θθ
使上式成立的最小的样本量为 k , k, k, 则称参数 θ \theta θ k k k 可估诊数. 此时 h ( X 1 , X 2 , ⋯   , X k ) h\left(X_{1}, X_{2}, \cdots, X_{k}\right) h(X1,X2,,Xk) 称为参数 θ \theta θ 的核 (kernel).

  • 定义:设 X 1 , X 2 , ⋯   , X n X_{1}, X_{2}, \cdots, X_{n} X1,X2,,Xn 取自分布族 F = { F ( θ ) , θ ∈ Θ } \mathcal{F}=\{F(\theta), \theta \in \Theta\} F={F(θ),θΘ} 的样本, 可估参
    θ \theta θ 存在样本量为 k k k 均无偏估计盒 h ( X 1 , X 2 , ⋯   , X k ) , θ h\left(X_{1}, X_{2}, \cdots, X_{k}\right), \theta h(X1,X2,,Xk),θ 有对称核 h ∗ ( X 1 , X 2 , ⋯   , h^{*}\left(X_{1}, X_{2}, \cdots,\right. h(X1,X2,, X k ) , \left.X_{k}\right), Xk), 则参数 θ \theta θ U U U 统计量如下定义:

U ( X 1 , X 2 , ⋯   , X n ) = 1 ( n k ) ∑ ( i 1 , i 2 , ⋯   , i k ) h ∗ ( X i 1 , X i 2 , ⋯   , X i k ) U\left(X_{1}, X_{2}, \cdots, X_{n}\right)=\frac{1}{\left(\begin{array}{l} n \\ k \end{array}\right)} \sum_{\left(i_{1}, i_{2}, \cdots, i_{k}\right)} h^{*}\left(X_{i_{1}}, X_{i_{2}}, \cdots, X_{i_{k}}\right) U(X1,X2,,Xn)=(nk)1(i1,i2,,ik)h(Xi1,Xi2,,Xik)
其中 ∑ ( i 1 , i 2 , ⋯   , i k ) \sum_{\left(i_{1}, i_{2}, \cdots, i_{k}\right)} (i1,i2,,ik) 表示对 { 1 , 2 , ⋯   , n } \{1,2, \cdots, n\} {1,2,,n} 中所有可能的 k k k 个数的组合求和.

  • 定理 : 设 X 1 , X 2 , ⋯   , X n X_{1}, X_{2}, \cdots, X_{n} X1,X2,,Xn 是取自分布族 F = { F ( θ ) , θ ∈ Θ } \mathcal{F}=\{F(\theta), \theta \in \Theta\} F={F(θ),θΘ} 的简单随机样本, θ \theta θ k k k 可估参数, U ( X 1 , X 2 , ⋯   , X n ) U\left(X_{1}, X_{2}, \cdots, X_{n}\right) U(X1,X2,,Xn) θ \theta θ U U U 统计量, 它的核是 h ( X 1 , X 2 , ⋯   , h\left(X_{1}, X_{2}, \cdots,\right. h(X1,X2,, X k , X_{k}, Xk,

E ( U ( X 1 , X 2 , ⋯   , X n ) ) = θ E\left(U\left(X_{1}, X_{2}, \cdots, X_{n}\right)\right)=\theta E(U(X1,X2,,Xn))=θ

如果令 θ = E [ h ( X 1 , ⋯   , X m ) ] , \theta=E\left[h\left(X_{1}, \cdots, X_{m}\right)\right], θ=E[h(X1,,Xm)], E ( U n ) = θ . E\left(U_{n}\right)=\theta . E(Un)=θ. 为简化 U U U 统计量的方差的计算, 不妨假设 θ = 0 , \theta=0, θ=0, 否则,只需以 h − θ h-\theta hθ h . h . h. c = 1 , ⋯   , m , c=1, \cdots, m, c=1,,m,
h c ( x 1 , ⋯   , x c ) = E [ h ( X 1 , ⋯   , X m ) ∣ X 1 = x 1 , ⋯   , X c = x c ] h_{c}\left(x_{1}, \cdots, x_{c}\right)=E\left[h\left(X_{1}, \cdots, X_{m}\right) \mid X_{1}=x_{1}, \cdots, X_{c}=x_{c}\right] hc(x1,,xc)=E[h(X1,,Xm)X1=x1,,Xc=xc]
则由 θ = 0 , \theta=0, θ=0,
E [ h c ( X 1 , ⋯   , X c ) ] = E { E [ h ( X 1 , ⋯   , X m ) ∣ X 1 , ⋯   , X c ] } = E [ h ( X 1 , ⋯   , X m ) ] = 0 \begin{aligned} E\left[h_{c}\left(X_{1}, \cdots, X_{c}\right)\right] &=E\left\{E\left[h\left(X_{1}, \cdots, X_{m}\right) \mid X_{1}, \cdots, X_{c}\right]\right\} \\ &=E\left[h\left(X_{1}, \cdots, X_{m}\right)\right]=0 \end{aligned} E[hc(X1,,Xc)]=E{E[h(X1,,Xm)X1,,Xc]}=E[h(X1,,Xm)]=0

σ c 2 = var ⁡ ( h c ( X 1 , ⋯   , X c ) ) , c = 1 , ⋯   , m \sigma_{c}^{2}=\operatorname{var}\left(h_{c}\left(X_{1}, \cdots, X_{c}\right)\right), \quad c=1, \cdots, m σc2=var(hc(X1,,Xc)),c=1,,m
容易看出: 如果假定 h ( X 1 , ⋯   , X m ) h\left(X_{1}, \cdots, X_{m}\right) h(X1,,Xm) 的方差有限, 则 σ c 2 < ∞ , c = 1 , ⋯   , m . \sigma_{c}^{2}<\infty, c=1, \cdots, m . σc2<,c=1,,m.

  • 方差为:

var ⁡ ( U n ) = ( n m ) − 2 ∑ c = 1 m ( n m ) ( m c ) ( n − m m − c ) σ c 2 = ( n m ) − 1 ∑ c = 1 m ( m c ) ( n − m m − c ) σ c 2 \begin{aligned} \operatorname{var}\left(U_{n}\right) &=\left(\begin{array}{c} n \\ m \end{array}\right)^{-2} \sum_{c=1}^{m}\left(\begin{array}{c} n \\ m \end{array}\right)\left(\begin{array}{c} m \\ c \end{array}\right)\left(\begin{array}{c} n-m \\ m-c \end{array}\right) \sigma_{c}^{2} \\ &=\left(\begin{array}{c} n \\ m \end{array}\right)^{-1} \sum_{c=1}^{m}\left(\begin{array}{c} m \\ c \end{array}\right)\left(\begin{array}{c} n-m \\ m-c \end{array}\right) \sigma_{c}^{2} \end{aligned} var(Un)=(nm)2c=1m(nm)(mc)(nmmc)σc2=(nm)1c=1m(mc)(nmmc)σc2

U U U 统计量具有很好的大样本性质, U U U 统计量均方收敛到 θ , \theta, θ, 从而 U U U 统计量是 θ \theta θ 的相合估计 (consistency); 极限分布是正态分布.
定理1.5: 设 X 1 , X 2 , ⋯   , X n X_{1}, X_{2}, \cdots, X_{n} X1,X2,,Xn 是取自分布族 F = { F ( θ ) , θ ∈ Θ } \mathcal{F}=\{F(\theta), \theta \in \Theta\} F={F(θ),θΘ} 的简单随机样本, θ \theta θ
k k k 可估参数, U ( X 1 , X 2 , ⋯   , X n ) U\left(X_{1}, X_{2}, \cdots, X_{n}\right) U(X1,X2,,Xn) θ \theta θ U U U 统计量, 它的核为 h ( X 1 , X 2 , ⋯   , X k ) , h\left(X_{1}, X_{2}, \cdots, X_{k}\right), h(X1,X2,,Xk),
E [ h ( X 1 , X 2 , ⋯   , X k ) ] 2 < ∞ E\left[h\left(X_{1}, X_{2}, \cdots, X_{k}\right)\right]^{2}<\infty E[h(X1,X2,,Xk)]2<

lim ⁡ n → ∞ n k 2 var ⁡ [ U ( X 1 , X 2 , ⋯   , X n ) ] = ζ 1 \lim _{n \rightarrow \infty} \frac{n}{k^{2}} \operatorname{var}\left[U\left(X_{1}, X_{2}, \cdots, X_{n}\right)\right]=\zeta_{1} nlimk2nvar[U(X1,X2,,Xn)]=ζ1
其中 ζ 1 = cov ⁡ [ h ( X 1 , X 2 , ⋯   , X k ) , h ( X 1 , X k + 1 , ⋯   , X 2 k − 1 ) ] > 0 \zeta_{1}=\operatorname{cov}\left[h\left(X_{1}, X_{2}, \cdots, X_{k}\right), h\left(X_{1}, X_{k+1}, \cdots, X_{2 k-1}\right)\right]>0 ζ1=cov[h(X1,X2,,Xk),h(X1,Xk+1,,X2k1)]>0

( Hoeffding 定理) \quad X 1 , X 2 , ⋯   , X n X_{1}, X_{2}, \cdots, X_{n} X1,X2,,Xn 是取自分布族 F = { F ( θ ) , θ ∈ \mathcal{F}=\{F(\theta), \theta \in F={F(θ),θ
Θ } \Theta\} Θ} 仆简单随机样本, θ \theta θ k k k 可估参数, U ( X 1 , X 2 , ⋯   , X n ) U\left(X_{1}, X_{2}, \cdots, X_{n}\right) U(X1,X2,,Xn) θ \theta θ U U U 统计量,它约 核是 h ( X 1 , X 2 , ⋯   , X k ) , h\left(X_{1}, X_{2}, \cdots, X_{k}\right), h(X1,X2,,Xk),
E [ h ( X 1 , X 2 , ⋯   , X k ) ] 2 < ∞ E\left[h\left(X_{1}, X_{2}, \cdots, X_{k}\right)\right]^{2}<\infty E[h(X1,X2,,Xk)]2<
ζ 1 = cov ⁡ [ h ( X 1 , X 2 , ⋯   , X k ) , h ( X 1 , X k + 1 , ⋯   , X 2 k − 1 ) ] > 0 \zeta_{1}=\operatorname{cov}\left[h\left(X_{1}, X_{2}, \cdots, X_{k}\right), h\left(X_{1}, X_{k+1}, \cdots, X_{2 k-1}\right)\right]>0 ζ1=cov[h(X1,X2,,Xk),h(X1,Xk+1,,X2k1)]>0 时, 有
n [ U ( X 1 , X 2 , ⋯   , X n ) − θ ] → N ( 0 , k 2 ζ 1 ) ( n → + ∞ ) \sqrt{n}\left[U\left(X_{1}, X_{2}, \cdots, X_{n}\right)-\theta\right] \rightarrow N\left(0, k^{2} \zeta_{1}\right)(n \rightarrow+\infty) n [U(X1,X2,,Xn)θ]N(0,k2ζ1)(n+)

两样本U统计量

定义 : 设 X = { X 1 , X 2 , ⋯   , X n } , X 1 , X 2 , ⋯   , X n X=\left\{X_{1}, X_{2}, \cdots, X_{n}\right\}, X_{1}, X_{2}, \cdots, X_{n} X={X1,X2,,Xn},X1,X2,,Xn 独立同分布取自分布族 F , Y = { Y 1 , Y 2 , ⋯   , Y m } \mathcal{F}, Y=\left\{Y_{1}, Y_{2}, \cdots, Y_{m}\right\} F,Y={Y1,Y2,,Ym} 独立同分布取自分布族 G , X \mathcal{G}, X G,X Y Y Y 独立. 如果待估 参数 θ ∈ F = { F , G } , \theta \in \mathbf{F}=\{F, G\}, θF={F,G}, 存在样本量分别为 k ⩽ n k \leqslant n kn l ⩽ m l \leqslant m lm 的样本构成的估计量 h ( X 1 , X 2 , ⋯   , X k , Y 1 , Y 2 , ⋯   , Y l ) h\left(X_{1}, X_{2}, \cdots, X_{k}, Y_{1}, Y_{2}, \cdots, Y_{l}\right) h(X1,X2,,Xk,Y1,Y2,,Yl) θ \theta θ 的无偏估计, 即满足
E h ( X 1 , X 2 , ⋯   , X k , Y 1 , Y 2 , ⋯   , Y l ) = θ , ∀ θ ∈ F E h\left(X_{1}, X_{2}, \cdots, X_{k}, Y_{1}, Y_{2}, \cdots, Y_{l}\right)=\theta, \quad \forall \theta \in \mathbf{F} Eh(X1,X2,,Xk,Y1,Y2,,Yl)=θ,θF
上述关系成立的暖小的样本量为 k , l , k, l, k,l, 则称参数 θ \theta θ ( k , l ) (k, l) (k,l) 可估的, h ( X 1 , X 2 , ⋯   , X k , h\left(X_{1}, X_{2}, \cdots, X_{k},\right. h(X1,X2,,Xk, Y 1 , Y 2 , ⋯   , Y l ) \left.Y_{1}, Y_{2}, \cdots, Y_{l}\right) Y1,Y2,,Yl) 称为参数 θ \theta θ 的核 (kernel).

定义 : X = { X 1 , X 2 , ⋯   , X n } , X 1 , X 2 , ⋯   , X n X=\left\{X_{1}, X_{2}, \cdots, X_{n}\right\}, X_{1}, X_{2}, \cdots, X_{n} X={X1,X2,,Xn},X1,X2,,Xn 独立同分布取自分布族 F , Y = { Y 1 , Y 2 , ⋯   , Y m } \mathcal{F}, Y=\left\{Y_{1}, Y_{2}, \cdots, Y_{m}\right\} F,Y={Y1,Y2,,Ym} X X X 独立同分布取自分布族 G , X \mathcal{G}, X G,X Y Y Y 独立, ( k , l ) (k, l) (k,l) 可估 参数 θ \theta θ 存在样本量分别为 ( k , l ) (k, l) (k,l) 物对称无偏估计量 h ( X 1 , X 2 , ⋯   , X k , Y 1 , Y 2 , ⋯   , Y l ) , h\left(X_{1}, X_{2}, \cdots, X_{k}, Y_{1}, Y_{2}, \cdots, Y_{l}\right), h(X1,X2,,Xk,Y1,Y2,,Yl),
则参数 θ \theta θ U U U 统计量如下定义:
U ( X 1 , X 2 , ⋯   , X n , Y 1 , Y 2 , ⋯   , Y m ) = 1 ( n k ) ( m l ) ∑ ( i 1 , i 2 , ⋯   , i k ) ∑ ( j 1 , j 2 , ⋯   , j l ) h ( X i 1 , X i 2 , ⋯   , X i k , Y j 1 , Y j 2 , ⋯   , Y j l ) \begin{aligned} U\left(X_{1}, X_{2}, \cdots, X_{n}, Y_{1}, Y_{2}, \cdots, Y_{m}\right)=& \frac{1}{\left(\begin{array}{l} n \\ k \end{array}\right)\left(\begin{array}{c} m \\ l \end{array}\right)} \sum_{\left(i_{1}, i_{2}, \cdots, i_{k}\right)} \sum_{\left(j_{1}, j_{2}, \cdots, j_{l}\right)} \\ & h\left(X_{i_{1}}, X_{i_{2}}, \cdots, X_{i_{k}}, Y_{j_{1}}, Y_{j_{2}}, \cdots, Y_{j_{l}}\right) \end{aligned} U(X1,X2,,Xn,Y1,Y2,,Ym)=(nk)(ml)1(i1,i2,,ik)(j1,j2,,jl)h(Xi1,Xi2,,Xik,Yj1,Yj2,,Yjl)

E [ h ( X 1 , ⋯   , X m 1 ; Y 1 , ⋯   , Y m 2 ) ] = θ , E\left[h\left(X_{1}, \cdots, X_{m_{1}} ; Y_{1}, \cdots, Y_{m_{2}}\right)\right]=\theta, E[h(X1,,Xm1;Y1,,Ym2)]=θ, E ( U n 1 n 2 ) = θ . E\left(U_{n_{1} n_{2}}\right)=\theta . E(Un1n2)=θ. 与单样本的情况相类似, 可以得到 U U U 统计量的方差. 令
h c d ( x 1 , ⋯   , x c ; y 1 , ⋯   , y d ) = E [ h ( X 1 , ⋯   , X m 1 ; Y 1 , ⋯   , Y m 2 ) ∣ X 1 = x 1 , ⋯   , X c = x c ; Y 1 = y 1 , ⋯   , Y d = y d ] σ c d 2 = var ⁡ ( h c d ( X 1 , ⋯   , X c ; Y 1 , ⋯   , Y d ) ) \begin{aligned} & h_{c d}\left(x_{1}, \cdots, x_{c} ; y_{1}, \cdots, y_{d}\right) \\ =& E\left[h\left(X_{1}, \cdots, X_{m_{1}} ; Y_{1}, \cdots, Y_{m_{2}}\right) \mid X_{1}=x_{1}, \cdots, X_{c}=x_{c} ; Y_{1}=y_{1}, \cdots, Y_{d}=y_{d}\right] \\ \sigma_{c d}^{2}=\operatorname{var}\left(h_{c d}\left(X_{1}, \cdots, X_{c} ; Y_{1}, \cdots, Y_{d}\right)\right) \end{aligned} =σcd2=var(hcd(X1,,Xc;Y1,,Yd))hcd(x1,,xc;y1,,yd)E[h(X1,,Xm1;Y1,,Ym2)X1=x1,,Xc=xc;Y1=y1,,Yd=yd]
其中 c = 0 , 1 , ⋯   , m 1 ; d = 0 , 1 , ⋯   , m 2 , σ 00 2 = 0. c=0,1, \cdots, m_{1} ; d=0,1, \cdots, m_{2}, \sigma_{00}^{2}=0 . c=0,1,,m1;d=0,1,,m2,σ002=0.
var ⁡ ( U n 1 n 2 ) = 1 ( n 1 m 1 ) ( n 2 m 2 ) ∑ c = 0 m 1 ∑ d = 0 m 2 ( m 1 c ) ( n 1 − m 1 m 1 − c ) ( m 2 d ) ( n 2 − m 2 m 2 − d ) σ c d 2 \operatorname{var}\left(U_{n_{1} n_{2}}\right)=\frac{1}{\left(\begin{array}{c} n_{1} \\ m_{1} \end{array}\right)\left(\begin{array}{l} n_{2} \\ m_{2} \end{array}\right)} \sum_{c=0}^{m_{1}} \sum_{d=0}^{m_{2}}\left(\begin{array}{c} m_{1} \\ c \end{array}\right)\left(\begin{array}{c} n_{1}-m_{1} \\ m_{1}-c \end{array}\right)\left(\begin{array}{c} m_{2} \\ d \end{array}\right)\left(\begin{array}{c} n_{2}-m_{2} \\ m_{2}-d \end{array}\right) \sigma_{c d}^{2} var(Un1n2)=(n1m1)(n2m2)1c=0m1d=0m2(m1c)(n1m1m1c)(m2d)(n2m2m2d)σcd2

定理 : 对于两样本 U U U 统计量 U n 1 n 2 , U_{n_{1} n_{2}}, Un1n2, 如果核 h ( X 1 , ⋯   , X m 1 ; Y 1 , ⋯   , Y m 2 ) h\left(X_{1}, \cdots, X_{m_{1}} ; Y_{1}, \cdots, Y_{m_{2}}\right) h(X1,,Xm1;Y1,,Ym2)
的数学期望为 θ \theta θ 且方差有限, σ 10 2 > 0 , σ 01 2 > 0 , σ c d 2 \sigma_{10}^{2}>0, \sigma_{01}^{2}>0, \sigma_{c d}^{2} σ102>0,σ012>0,σcd2 在式 ( 2.2.2 ) (2.2 .2) (2.2.2) 中定义,又记 n = n 1 + n 2 n=n_{1}+n_{2} n=n1+n2
σ n 1 n 2 2 = n ( m 1 2 n 1 σ 10 2 + m 2 2 n 2 σ 01 2 ) \sigma_{n_{1} n_{2}}^{2}=n\left(\frac{m_{1}^{2}}{n_{1}} \sigma_{10}^{2}+\frac{m_{2}^{2}}{n_{2}} \sigma_{01}^{2}\right) σn1n22=n(n1m12σ102+n2m22σ012)
则当 n 1 → ∞ , n 2 → ∞ n_{1} \rightarrow \infty, n_{2} \rightarrow \infty n1,n2 时, 有
n ( U n 1 n 2 − θ ) σ n 1 n 2 ⟶ D N ( 0 , 1 ) U n 1 n 2 − θ var ⁡ ( U n 1 n 2 ) ⟶ D N ( 0 , 1 ) \begin{array}{c} \frac{\sqrt{n}\left(U_{n_{1} n_{2}}-\theta\right)}{\sigma_{n_{1} n_{2}}} \stackrel{D}{\longrightarrow} N(0,1) \\ \frac{U_{n_{1} n_{2}}-\theta}{\sqrt{\operatorname{var}\left(U_{n_{1} n_{2}}\right)}} \stackrel{D}{\longrightarrow} N(0,1) \end{array} σn1n2n (Un1n2θ)DN(0,1)var(Un1n2) Un1n2θDN(0,1)

例 : 设总体 X X X 服从分布函数为 F ( x ) F(x) F(x) 的分布,Y 服从分布函数为 G ( x ) G(x) G(x) 的分布, X 1 , X 2 , ⋯   , X n X_{1}, X_{2}, \cdots, X_{n} X1,X2,,Xn 独立同分布取自分布族 F , ( Y 1 , Y 2 , ⋯   , Y m ) \mathcal{F},\left(Y_{1}, Y_{2}, \cdots, Y_{m}\right) F,(Y1,Y2,,Ym) 独立同分布取
自分布族 G , X \mathcal{G}, X G,X Y Y Y 独立, 待估参数是 θ = P ( X > Y ) , \theta=P(X>Y), θ=P(X>Y), 考忘 θ \theta θ U U U 统计量和它的 性秒.
\quad 给定 i , j , i, j, i,j,
h ( X i , Y j ) = I ( X i > Y j ) = { 1 , X i > Y i 0 ,  其他.  h\left(X_{i}, Y_{j}\right)=I\left(X_{i}>Y_{j}\right)=\left\{\begin{array}{ll} 1, & X_{i}>Y_{i} \\ 0, & \text { 其他. } \end{array}\right. h(Xi,Yj)=I(Xi>Yj)={1,0,Xi>Yi 其他
容易知道: E ( h ( X i , Y j ) ) = θ , E\left(h\left(X_{i}, Y_{j}\right)\right)=\theta, E(h(Xi,Yj))=θ, h ( X i , Y j ) h\left(X_{i}, Y_{j}\right) h(Xi,Yj) 张成的 U U U 统计量定义为
U n m = 1 n m ∑ i = 1 n ∑ j = 1 m I ( X i > Y j ) U_{n m}=\frac{1}{n m} \sum_{i=1}^{n} \sum_{j=1}^{m} I\left(X_{i}>Y_{j}\right) Unm=nm1i=1nj=1mI(Xi>Yj)
这个 U U U 统计量将在第 2 章介绍,它是 Mann 和 Whitney 于 1947 年提出的, 称做 Mann-Whitney 统计量, 它是 θ = P ( X > Y ) \theta=\mathrm{P}(X>Y) θ=P(X>Y) 的最小方差无偏估计. 如果我们要检验 问题:
H 0 : F = G ↔ H 1 : F ⩾ G H_{0}: F=G \leftrightarrow H_{1}: F \geqslant G H0:F=GH1:FG

则可知在零假设成立的情况下, U U U 统计量的方差为
var ⁡ ( U n ) m = n + m + 1 12 n m \operatorname{var}\left(U_{n}\right)_{m}=\frac{n+m+1}{12 n m} var(Un)m=12nmn+m+1
贝此可知, 当 n → ∞ , m → ∞ n \rightarrow \infty, m \rightarrow \infty n,m 时,
12 n m ⋅ U − 0.5 n + m → L N ( 0 , 1 ) \sqrt{12 n m} \cdot \frac{U-0.5}{n+m} \stackrel{\mathcal{L}}{\rightarrow} N(0,1) 12nm n+mU0.5LN(0,1)
故在大样本情况下检验的拒绝域为
U ⩾ 1 2 + n + m 12 n m ⋅ Z 1 − α U \geqslant \frac{1}{2}+\sqrt{\frac{n+m}{12 n m}} \cdot Z_{1-\alpha} U21+12nmn+m Z1α
这个检验称为 Mann-Whitney 检验.

假设检验

Θ 0 ∩ Θ 1 = ∅ , \Theta_{0} \cap \Theta_{1}=\varnothing, Θ0Θ1=, 检验统计量为 T n . T_{n} . Tn. 拒绝零假设的概率, 也就是样本落入拒绝域 W W W 的概率为检验的 势, 记为
g T n ( θ ) = P ( T n ∈ W ) , θ ∈ θ = θ 0 ∪ Θ 1 g_{T_{n}}(\theta)=P\left(T_{n} \in W\right), \quad \theta \in \theta=\theta_{0} \cup \Theta_{1} gTn(θ)=P(TnW),θθ=θ0Θ1
θ ∈ Θ 0 , \theta \in \Theta_{0} \quad, θΘ0, 检验的势是犯第一类错误的概率,即显著性水平

当 $ \theta \in \Theta_{1} \quad,$ 检验的势是不犯第二类错误的概率,
一个有意义的检验, 当显著性水平给定时,检验的势函数应该越大越好。

无偏检验

定义 :设 W W W 表示一个检验的拒绝域, 对一般的假设检验问题, 如果
P ( X ∈ W ) { ⩽ α , θ ∈ θ 0 ⩾ α , θ ∈ Θ 1 P(X \in W)\left\{\begin{array}{ll} \leqslant \alpha, & \theta \in \theta_{0} \\ \geqslant \alpha, & \theta \in \Theta_{1} \end{array}\right. P(XW){α,α,θθ0θΘ1
则称该检验为无偏检验.

假设检验与置信区间的关系

  • 以单变量位置参数为例,假设参数 θ \theta θ 的估计量为 θ ^ , \hat{\theta}, θ^, 则可以 用 θ ^ \hat{\theta} θ^ 构造 θ \theta θ 的一个 100 ( 1 − α ) % 100(1-\alpha) \% 100(1α)% :

( θ ^ − C α , θ ^ + C α ) \left(\hat{\theta}-C_{\alpha}, \hat{\theta}+C_{\alpha}\right) (θ^Cα,θ^+Cα)

  • 如果猜想的 θ 0 \theta_{0} θ0 不在该区间内,则可以拒绝零假设,认为数 据所支持的总体与猜想的总体不一致
  • 如果 θ 0 \theta_{0} θ0 在该区间内,则表示不能拒绝零假设,但是这没有 表明 θ \theta θ 就是 θ 0 \theta_{0} θ0
  • 置信区间和假设检验虽然对总体推断的角度不同,但是推断 的结果却可能是一致的

经验分布

随机变量 X ∈ R X \in \mathbb{R} XR 的分布函数 ( ( ( 右连续 ) ) ) 定义为:
F ( x ) = P ( X ≤ x ) F(x)=\mathbb{P}(X \leq x) F(x)=P(Xx)
对分布函数最直接的估计是应用经验分布函数。经验分布函 数的定义为:当有独立的随机样本 X 1 , … , X n X_{1}, \ldots, X_{n} X1,,Xn 时,定义
F ^ n ( x ) = 1 n ∑ i = 1 n I ( X i ≤ x ) \hat{F}_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} I\left(X_{i} \leq x\right) F^n(x)=n1i=1nI(Xix)
这里 I ( X ≤ x ) I(X \leq x) I(Xx) 为示性函数 (indicator function),当 X ≤ x X \leq x Xx 时 取值为 1 , 1, 1, 否则为 0

定理 :令 X 1 , X 2 , ⋯   , X n X_{1}, X_{2}, \cdots, X_{n} X1,X2,,Xn 的分布函数为 F , F ^ n F, \hat{F}_{n} F,F^n 为经验分布函数, 于是以 下结论成立:

(1) ∀ x , E ( F ^ n ( x ) ) = F ( x ) , var ⁡ ( F ^ n ( x ) ) = F ( x ) ( 1 − F ( x ) ) n ; \forall x, E\left(\hat{F}_{n}(x)\right)=F(x), \operatorname{var}\left(\hat{F}_{n}(x)\right)=\frac{F(x)(1-F(x))}{n} ; \quad x,E(F^n(x))=F(x),var(F^n(x))=nF(x)(1F(x)); 于是, MSE ⁡ = \operatorname{MSE}= MSE=
F ( x ) ( 1 − F ( x ) ) n → 0 , \frac{F(x)(1-F(x))}{n} \rightarrow 0, nF(x)(1F(x))0, 而且 F ˙ n ( x ) → P F ( x ) . \dot{F}_{n}(x) \stackrel{P}{\rightarrow} F(x) . F˙n(x)PF(x).
(2) (Glivenko-Cantelli 定理) sup ⁡ x ∣ F ^ n ( x ) − F ( x ) ∣ →  a.s.  0 \sup _{x}\left|\hat{F}_{n}(x)-F(x)\right| \stackrel{\text { a.s. }}{\rightarrow} 0 supxF^n(x)F(x) a.s. 0.
(3) (Dvoretzky-Kiefer-Wolfowitz ( D K W ) (\mathrm{DKW}) (DKW) 不等式) ∀ ε > 0 , \forall \varepsilon>0, ε>0,
P ( sup ⁡ x ∣ F ^ n ( x ) − F ( x ) ∣ > ε ) ⩽ 2 e − 2 n ε 2 P\left(\sup _{x}\left|\hat{F}_{n}(x)-F(x)\right|>\varepsilon\right) \leqslant 2 \mathrm{e}^{-2 n \varepsilon^{2}} P(xsupF^n(x)F(x)>ε)2e2nε2

由 DKW 不等式, 我们可以构造一个置信区间. 令 ε n 2 = ln ⁡ ( 2 / α ) / ( 2 n ) , L ( x ) = \varepsilon_{n}^{2}=\ln (2 / \alpha) /(2 n), L(x)= εn2=ln(2/α)/(2n),L(x)=
max ⁡ { F ^ n ( x ) − ε n , 0 } , U ( x ) = min ⁡ { F ^ n ( x ) + ε n , 1 } , \max \left\{\hat{F}_{n}(x)-\varepsilon_{n}, 0\right\}, U(x)=\min \left\{\hat{F}_{n}(x)+\varepsilon_{n}, 1\right\}, max{F^n(x)εn,0},U(x)=min{F^n(x)+εn,1}, 根据式 (1.3) 可以得到
P ( L ( x ) ⩽ F ( x ) ⩽ U ( x ) ) ⩾ 1 − α P(L(x) \leqslant F(x) \leqslant U(x)) \geqslant 1-\alpha P(L(x)F(x)U(x))1α
也就是说,可以得到如下推论.

推论 : \quad
L ( x ) = max ⁡ { F ^ n ( x ) − ε n , 0 } U ( x ) = min ⁡ { F ^ n ( x ) + ε n , 1 } \begin{array}{l} L(x)=\max \left\{\hat{F}_{n}(x)-\varepsilon_{n}, 0\right\} \\ U(x)=\min \left\{\hat{F}_{n}(x)+\varepsilon_{n}, 1\right\} \end{array} L(x)=max{F^n(x)εn,0}U(x)=min{F^n(x)+εn,1}
其中
ε n = 1 2 n ln ⁡ ( 2 α ) \varepsilon_{n}=\sqrt{\frac{1}{2 n} \ln \left(\frac{2}{\alpha}\right)} εn=2n1ln(α2)
那么
P ( L ( x ) ⩽ F ( x ) ⩽ U ( x ) ) ⩾ 1 − α . P(L(x) \leqslant F(x) \leqslant U(x)) \geqslant 1-\alpha . P(L(x)F(x)U(x))1α.

生存函数

生存函数是生存分析中的基本概念,它是用分布函数来定 义:
S ( t ) = P ( T > t ) = 1 − F ( t ) S(t)=\mathbb{P}(T>t)=1-F(t) S(t)=P(T>t)=1F(t)
其中, T T T 是服从分布 F F F 的随机变量 进一步,我们可以用经验分布函数来估计生存函数
S n ( t ) = 1 − F n ( t ) S_{n}(t)=1-F_{n}(t) Sn(t)=1Fn(t)
寿命超过t的数据所占的比例

危险函数

危险函数:一个生存时间超过给定时间的个体瞬时死亡率 如果一个个体在时刻 t \mathrm{t} t 仍然存活,那么个体在时间范围 ( t , t + δ ) (t, t+\delta) (t,t+δ) 死亡的概率为
P ( t ≤ T ≤ t + δ ∣ T ≥ t ) = F ( t + δ ) − F ( t ) 1 − F ( t ) ≈ δ f ( t ) 1 − F ( t ) \mathbb{P}(t \leq T \leq t+\delta \mid T \geq t)=\frac{F(t+\delta)-F(t)}{1-F(t)} \approx \frac{\delta f(t)}{1-F(t)} P(tTt+δTt)=1F(t)F(t+δ)F(t)1F(t)δf(t)
危险函数定义为:
h ( t ) = f ( t ) 1 − F ( t ) h(t)=\frac{f(t)}{1-F(t)} h(t)=1F(t)f(t)
h ( t ) h(t) h(t) 是一个存活时间超过规定时间的个体瞬时死亡率。

危险函数还可以表示为:
h ( t ) = − d d t ln ⁡ [ 1 − F ( t ) ] = − d d t ln ⁡ S ( t ) h(t)=-\frac{d}{d t} \ln [1-F(t)]=-\frac{d}{d t} \ln S(t) h(t)=dtdln[1F(t)]=dtdlnS(t)
例如,考虑指数分布 F ( t ) = 1 − e − λ t F(t)=1-e^{-\lambda t} F(t)=1eλt 则可计算得到 h ( t ) = λ h(t)=\lambda h(t)=λ

利用 δ \delta δ -method,可以计算对数生存函数的方差
var ⁡ { ln ⁡ [ 1 − F n ( t ) ] } ≈ var ⁡ [ 1 − F n ( t ) ] [ 1 − F ( t ) ] 2 = 1 n F ( t ) ( 1 − F ( t ) ) [ 1 − F ( t ) ] 2 = 1 n F ( t ) 1 − F ( t ) . \begin{aligned} \operatorname{var}\left\{\ln \left[1-F_{n}(t)\right]\right\} & \approx \frac{\operatorname{var}\left[1-F_{n}(t)\right]}{[1-F(t)]^{2}}=\frac{1}{n} \frac{F(t)(1-F(t))}{[1-F(t)]^{2}} \\ &=\frac{1}{n} \frac{F(t)}{1-F(t)} . \end{aligned} var{ln[1Fn(t)]}[1F(t)]2var[1Fn(t)]=n1[1F(t)]2F(t)(1F(t))=n11F(t)F(t).

渐进相对效率

Pitman 渐进相对效率是ARE的代表。针对零假设只取一个值的 假设检验问题,在零假设的一个邻域内,固定势,令备择假设逼 近零假设,将两个统计量的样本量比值的极限定义为渐进相对效 率。

具体而言,对假设检验问题
H 0 : θ = θ 0 ↔ H 1 : θ ≠ θ 0 H_{0}: \theta=\theta_{0} \leftrightarrow H_{1}: \theta \neq \theta_{0} H0:θ=θ0H1:θ=θ0
取备择假设序列 θ i ( i = 1 , 2 , ⋯   ) , θ i ≠ θ 0 , \theta_{i}(i=1,2, \cdots), \theta_{i} \neq \theta_{0}, θi(i=1,2,),θi=θ0, lim ⁡ i → ∞ θ i = θ 0 . \lim _{i \rightarrow \infty} \theta_{i}=\theta_{0} . limiθi=θ0. 在固定势 1 − β 1-\beta 1β 之下,我
的两个检验统计量序列, n i n_{i} ni m i m_{i} mi 是两个统计量分别对应的样本量. 势函数满足:
lim ⁡ i → ∞ g V n i ( θ 0 ) = lim ⁡ i → ∞ g T m i ( θ 0 ) = α α < lim ⁡ i → ∞ g V n i ( θ i ) = lim ⁡ i → ∞ g T m i ( θ i ) = 1 − β < 1 \begin{array}{c} \lim _{i \rightarrow \infty} g_{V_{n_{i}}}\left(\theta_{0}\right)=\lim _{i \rightarrow \infty} g_{T_{m_{i}}}\left(\theta_{0}\right)=\alpha \\ \alpha<\lim _{i \rightarrow \infty} g_{V_{n_{i}}}\left(\theta_{i}\right)=\lim _{i \rightarrow \infty} g_{T_{m_{i}}}\left(\theta_{i}\right)=1-\beta<1 \end{array} limigVni(θ0)=limigTmi(θ0)=αα<limigVni(θi)=limigTmi(θi)=1β<1
如果极限
e V T = lim ⁡ i → ∞ m i n i e_{V T}=\lim _{i \rightarrow \infty} \frac{m_{i}}{n_{i}} eVT=ilimnimi
存在,且独立于 θ i , α \theta_{i}, \alpha θi,α β , \beta, β, 则称 e V T e_{V T} eVT V V V 相对于 T T T 的 渐近相对效率,简记为 ARE ⁡ ( V , T ) . \operatorname{ARE}(V, T) . ARE(V,T). 它是 Pitman 于 1948 年提出来的, 因此又称为 Pitman 沂近相对效率.

下面的 Nother 定理给出了计算沂近相对效率应满足的 5 个条件.
定理 :对假设检验问题 H 0 : θ = θ 0 ↔ H 1 : θ ≠ θ 0 : H_{0}: \theta=\theta_{0} \leftrightarrow H_{1}: \theta \neq \theta_{0}: H0:θ=θ0H1:θ=θ0:
(1) V n V_{n} Vn T m T_{m} Tm 是相容的统计量. 也就是说: 当 n , m → + ∞ n, m \rightarrow+\infty n,m+ , ∀ θ ≠ θ 0 , , \forall \theta \neq \theta_{0}, ,θ=θ0,
g ( θ i , V n i ) → 1 , g ( θ i , T m i ) → 1 g\left(\theta_{i}, V_{n_{i}}\right) \rightarrow 1, \quad g\left(\theta_{i}, T_{m_{i}}\right) \rightarrow 1 g(θi,Vni)1,g(θi,Tmi)1
(2) 如果记 E ( V n i ) = μ V n i , var ⁡ ( V n i ) = σ V n i 2 , E ( T m i ) = μ T m i , var ⁡ ( T m i ) = σ T m i 2 , E\left(V_{n_{i}}\right)=\mu_{V_{n_{i}}}, \operatorname{var}\left(V_{n_{i}}\right)=\sigma_{V_{n_{i}}}^{2}, E\left(T_{m_{i}}\right)=\mu_{T_{m_{i}}}, \operatorname{var}\left(T_{m_{i}}\right)=\sigma_{T_{m_{i}}}^{2}, E(Vni)=μVni,var(Vni)=σVni2,E(Tmi)=μTmi,var(Tmi)=σTmi2,
则在 θ = θ 0 \theta=\theta_{0} θ=θ0 的令域中一致地有缸
V n i − μ V n i ( θ ) σ V n i ( θ ) → L N ( 0 , 1 ) T m i − μ T m i ( θ ) σ T m i ( θ ) → L N ( 0 , 1 ) \begin{array}{l} \frac{V_{n_{i}}-\mu_{V_{n_{i}}}(\theta)}{\sigma_{V_{n_{i}}}(\theta)} \stackrel{\mathcal{L}}{\rightarrow} N(0,1) \\ \frac{T_{m_{i}}-\mu_{T_{m_{i}}}(\theta)}{\sigma_{T_{m_{i}}}(\theta)} \stackrel{\mathcal{L}}{\rightarrow} N(0,1) \end{array} σVni(θ)VniμVni(θ)LN(0,1)σTmi(θ)TmiμTmi(θ)LN(0,1)
(3) 存在导数 d μ V n i ( θ ) d θ ∣ θ = θ 0 , d μ T m i ( θ ) d θ ∣ θ = θ 0 ; \left.\frac{\mathrm{d} \mu_{V_{n_{i}}}(\theta)}{\mathrm{d} \theta}\right|_{\theta=\theta_{0}},\left.\frac{\mathrm{d} \mu_{T_{m_{i}}}(\theta)}{\mathrm{d} \theta}\right|_{\theta=\theta_{0}} ; dθdμVni(θ)θ=θ0,dθdμTmi(θ)θ=θ0; 而且 μ V n i ′ ( θ ) , μ T m i ′ ( θ ) \mu_{V_{n_{i}}}^{\prime}(\theta), \mu_{T_{m_{i}}}^{\prime}(\theta) μVni(θ),μTmi(θ) θ = θ 0 \theta=\theta_{0} θ=θ0
某一个闭邻域内连续, 导数不为 0. 0 . 0.
(4)
lim ⁡ i → ∞ σ V n i ( θ i ) σ V n i ( θ 0 ) = lim ⁡ i → ∞ σ T m i ( θ i ) σ T m i ( θ 0 ) = 1 lim ⁡ i → ∞ μ V n i ( θ i ) μ V n i ( θ 0 ) = lim ⁡ i → ∞ μ T m i ( θ i ) μ T m i ( θ 0 ) = 1 \begin{array}{l} \lim _{i \rightarrow \infty} \frac{\sigma_{V_{n_{i}}}\left(\theta_{i}\right)}{\sigma_{V_{n_{i}}}\left(\theta_{0}\right)}=\lim _{i \rightarrow \infty} \frac{\sigma_{T_{m_{i}}}\left(\theta_{i}\right)}{\sigma_{T_{m_{i}}}\left(\theta_{0}\right)}=1 \\ \lim _{i \rightarrow \infty} \frac{\mu_{V_{n_{i}}}\left(\theta_{i}\right)}{\mu_{V_{n_{i}}}\left(\theta_{0}\right)}=\lim _{i \rightarrow \infty} \frac{\mu_{T_{m_{i}}}\left(\theta_{i}\right)}{\mu_{T_{m_{i}}}\left(\theta_{0}\right)}=1 \end{array} limiσVni(θ0)σVni(θi)=limiσTmi(θ0)σTmi(θi)=1limiμVni(θ0)μVni(θi)=limiμTmi(θ0)μTmi(θi)=1
(5)
lim ⁡ i → ∞ μ V n i ′ ( θ 0 ) n i σ V n i 2 ( θ 0 ) = C V \lim _{i \rightarrow \infty} \frac{\mu_{V_{n_{i}}}^{\prime}\left(\theta_{0}\right)}{\sqrt{n_{i} \sigma_{V_{n_{i}}}^{2}\left(\theta_{0}\right)}}=C_{V} ilimniσVni2(θ0) μVni(θ0)=CV
lim ⁡ i → ∞ μ T m i ′ ( θ 0 ) m i σ T m i 2 ( θ 0 ) = C T \lim _{i \rightarrow \infty} \frac{\mu_{T_{m_{i}}}^{\prime}\left(\theta_{0}\right)}{\sqrt{m_{i} \sigma_{T_{m_{i}}}^{2}\left(\theta_{0}\right)}}=C_{T} ilimmiσTmi2(θ0) μTmi(θ0)=CT
V V V 相对于 T T T 的 Pitman 渐近相对效率等于
ARE ⁡ ( V , T ) = lim ⁡ i → ∞ m i n i = C V 2 C T 2 \operatorname{ARE}(V, T)=\lim _{i \rightarrow \infty} \frac{m_{i}}{n_{i}}=\frac{C_{V}^{2}}{C_{T}^{2}} ARE(V,T)=ilimnimi=CT2CV2

  • 检验效率

定义 : 假设检验问题: H 0 : θ = θ 0 ↔ H 1 : θ = θ 1 , H_{0}: \theta=\theta_{0} \leftrightarrow H_{1}: \theta=\theta_{1}, H0:θ=θ0H1:θ=θ1, 上述定理中定义的极
限为
lim ⁡ i → ∞ μ V n i ′ ( θ 0 ) n σ V n i ( θ 0 ) \lim _{i \rightarrow \infty} \frac{\mu_{V_{n_{i}}}^{\prime}\left(\theta_{0}\right)}{\sqrt{n} \sigma_{V_{n_{i}}}\left(\theta_{0}\right)} ilimn σVni(θ0)μVni(θ0)
称为 V n V_{n} Vn 的 效率, 记为 e f f ( V ) \mathrm{eff}(\mathrm{V}) eff(V).

  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值