[课程笔记]非参数统计Chapter 2单一样本的推断问题

课程笔记:非参数统计
参考教材:《非参数统计(第二版)》,王星,褚挺进,清华大学出版社
《应用非参数统计》薛留根,科学出版社

Chapter2 单一样本的推断问题

符号检验

符号检验

符号检验:通过符号“+”和“–”的个数来进行统计推断。 数值只和两类观测值有关。

假设总体 F ( M ) , M e \mathcal{F}(M), M_{\mathrm{e}} F(M),Me 是总体的中位数, 对于假设检验问题:
H 0 : M e = M 0 ↔ H 1 : M e ≠ M 0 H_{0}: M_{\mathrm{e}}=M_{0} \leftrightarrow H_{1}: M_{\mathrm{e}} \neq M_{0} H0:Me=M0H1:Me=M0
其中 , M 0 , M_{0} ,M0 是待检验的中位数值. 假设 X 1 , X 2 , ⋯   , X n X_{1}, X_{2}, \cdots, X_{n} X1,X2,,Xn 是从总体 F ( M ) \mathcal{F}(M) F(M) 中产生的简单随机样木, 定义: Y i = I { X i > M 0 } , Z i = I { X i < M 0 } , Y_{i}=I\left\{X_{i}>M_{0}\right\}, Z_{i}=I\left\{X_{i}<M_{0}\right\}, Yi=I{Xi>M0},Zi=I{Xi<M0},
S + = ∑ i = 1 n Y i , S − = ∑ i = 1 n Z i S^{+}=\sum_{i=1}^{n} Y_{i}, \quad S^{-}=\sum_{i=1}^{n} Z_{i} S+=i=1nYi,S=i=1nZi
S + + S − = n ′ , n ′ ⩽ n , S^{+}+S^{-}=n^{\prime}, n^{\prime} \leqslant n, S++S=n,nn, K = min ⁡ { S + , S − } . K=\min \left\{S^{+}, S^{-}\right\} . K=min{S+,S}. 在零假设之下,假设检验问题 (2.1) 寸
价于另一个结构问题: Y ∼ b ( 1 , p ) , p = P ( X > M 0 ) , Y \sim b(1, p), p=P\left(X>M_{0}\right), Yb(1,p),p=P(X>M0),
H 0 : p = 0.5 ↔ H 1 : p ≠ 0.5 H_{0}: p=0.5 \leftrightarrow H_{1}: p \neq 0.5 H0:p=0.5H1:p=0.5
此时, K < k K<k K<k 可以按照抽样分布 b ( n ′ , 0.5 ) b\left(n^{\prime}, 0.5\right) b(n,0.5) 求解得到,在显著性水平为 α \alpha α 下的检验 的拒绝域为
2 × P binom  ( K ⩽ k ∣ n ′ , p = 0.5 ) ⩽ α 2 \times P_{\text {binom }}\left(K \leqslant k \mid n^{\prime}, p=0.5\right) \leqslant \alpha 2×Pbinom (Kkn,p=0.5)α

  • 大样本计算

当样本量较大时,可以使用二项分布的正态近似进行检验,也就是说,当 S + ∼ S^{+} \sim S+ b ( n ′ , 1 2 ) b\left(n^{\prime}, \frac{1}{2}\right) b(n,21) 时, S + ∼ ˙ N ( n ′ 2 , n ′ 4 ) , S^{+} \dot{\sim} N\left(\frac{n^{\prime}}{2}, \frac{n^{\prime}}{4}\right), S+˙N(2n,4n), 定义
Z = S + − n ′ 2 n ′ 4 → L N ( 0 , 1 ) , n → + ∞ Z=\frac{S^{+}-\frac{n^{\prime}}{2}}{\sqrt{\frac{n^{\prime}}{4}}} \stackrel{\mathcal{L}}{\rightarrow} N(0,1), n \rightarrow+\infty Z=4n S+2nLN(0,1),n+
n ′ n^{\prime} n 不台大时,可以用 Z Z Z 的正态性修正,如下式:
Z = S + − n ′ 2 + C n ′ 4 → c N ( 0 , 1 ) Z=\frac{S^{+}-\frac{n^{\prime}}{2}+C}{\sqrt{\frac{n^{\prime}}{4}}} \stackrel{c}{\rightarrow} N(0,1) Z=4n S+2n+CcN(0,1)
一股, 当 S + < n ′ 2 S^{+}<\frac{n^{\prime}}{2} S+<2n 时, C = − 1 2 ; C=-\frac{1}{2} ; C=21; S + > n ′ 2 S^{+}>\frac{n^{\prime}}{2} S+>2n 时, C = 1 2 C=\frac{1}{2} C=21。(当 S + S^+ S+值较小时,服从的分布的均值增大1/2,当 S + S^+ S+的值较大时,服从的分布的均值减小一些)

相应的 p p p 值为 2 P N ( 0 , 1 ) ( Z < z 2 P_{N(0,1)}(Z<z 2PN(0,1)(Z<z). 同理,可以得到单侧检验的结论如下。

左侧检验: H 0 : M e ⩽ M 0 ↔ H 1 : M e > M 0 , p H_{0}: M_{\mathrm{e}} \leqslant M_{0} \leftrightarrow H_{1}: M_{\mathrm{e}}>M_{0}, p H0:MeM0H1:Me>M0,p 值为 P N ( 0 , 1 ) ( Z < z ) ; P_{N(0,1)}(Z<z) ; PN(0,1)(Z<z);
右侧检验: H 0 : M e ⩾ M 0 ↔ H 1 : M e < M 0 , p H_{0}: M_{\mathrm{e}} \geqslant M_{0} \leftrightarrow H_{1}: M_{\mathrm{e}}<M_{0}, p H0:MeM0H1:Me<M0,p 值为 P N ( 0 , 1 ) ( Z > z ) . P_{N(0,1)}(Z>z) . PN(0,1)(Z>z).

分位数检验

假设总体 F ( M p ) , M p \mathcal{F}\left(M_{p}\right), M_{p} F(Mp),Mp 是总体的 p p p 分位数, 对于假设检验问题:
H 0 : M p = M p 0 ↔ H 1 : M p ≠ M p 0 H_{0}: M_{p}=M_{p_{0}} \leftrightarrow H_{1}: M_{p} \neq M_{p_{0}} H0:Mp=Mp0H1:Mp=Mp0
M p 0 M_{p_{0}} Mp0 是待检验的 p 0 p_{0} p0 分位数.上述检验问题等价于
H 0 : p = p 0 ↔ H 1 : p ≠ p 0 H_{0}: p=p_{0} \leftrightarrow H_{1}: p \neq p_{0} H0:p=p0H1:p=p0
类似于中位数检验,定义: Y i = I { X i > M p 0 } , Z i = I { X i < M p 0 } , Y_{i}=I\left\{X_{i}>M_{p_{0}}\right\}, Z_{i}=I\left\{X_{i}<M_{p_{0}}\right\}, Yi=I{Xi>Mp0},Zi=I{Xi<Mp0}, 我们注意到
在零假设之下, Z i ∼ B ( 1 , p 0 ) , Z_{i} \sim B\left(1, p_{0}\right), ZiB(1,p0),
S + = ∑ i = 1 n Y i , S − = ∑ i = 1 n Z i S^{+}=\sum_{i=1}^{n} Y_{i}, \quad S^{-}=\sum_{i=1}^{n} Z_{i} S+=i=1nYi,S=i=1nZi
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-V6JD84g5-1615373438409)(D:\大学\BCD专业课\a非参数统计\非参数统计310.png)]

Cox-Staut 趋势存在性检验

H 0 : H_{0}: H0: 数据序列无趋势 ↔ H 1 : \leftrightarrow H_{1}: H1: 数据序列有增长或下降趋势
假设数据序列 x 1 , x 2 , ⋯   , x n x_{1}, x_{2}, \cdots, x_{n} x1,x2,,xn 独立, 在零假设之下, 同分布为 F ( x ) , F(x), F(x),
c = { n / 2 ,  如果  n  是偶数,  ( n + 1 ) / 2 ,  如果  n  是奇数.  c=\left\{\begin{array}{ll} n / 2, & \text { 如果 } n \text { 是偶数, } \\ (n+1) / 2, & \text { 如果 } n \text { 是奇数. } \end{array}\right. c={n/2,(n+1)/2, 如果 n 是偶数 如果 n 是奇数
x i x_{i} xi x i + c x_{i+c} xi+c 组成数对 ( x i , x i + c ) \left(x_{i}, x_{i+c}\right) (xi,xi+c)

n n n 为偶数时, 共有 c c c 对, 当 n n n 为奇数时, 共有 c − 1 c-1 c1 对。

  • 计算每一数对前后两值之差: D i = x i − x i + c D_{i}=x_{i}-x_{i+c} Di=xixi+c. 用 D i D_{i} Di 的符号度量 增减。

  • S + S^{+} S+ 为正 D i D_{i} Di 的数目, 令 S − S^{-} S 为负 D i D_{i} Di 的数目, S + + S − = n ′ , n ′ ⩽ n . S^{+}+S^{-}=n^{\prime}, n^{\prime} \leqslant n . S++S=n,nn.

  • K = min ⁡ { S + , S − } , K=\min \left\{S^{+}, S^{-}\right\}, K=min{S+,S}, 显然当正号太多或负号太多, 即 K K K 过小的时候, 有趋势存在

  • 在没有趋势的零假设下, K K K 服从二项分布 b ( n ′ , 0.5 ) , b\left(n^{\prime}, 0.5\right), b(n,0.5), 该检验在某种意义上是符号检验的应用的拓展。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-PyHrACED-1615373438412)(D:\大学\BCD专业课\a非参数统计\非参数统计310_2.png)]

随机游程检验

其中一个典型的序列是二元 0 / 1 0 / 1 0/1 序列出现顺序的随机性问题。 在一个二元序列中, 0 和 1 交替出现。

首先引入以下概念:

  • 在一个二元序列中, 一个由 0 或 1 连续构成的串称为一个游程,

  • 一个游程中数据的个数称为游程的长度.

  • 一个序列中 游程个数 用 R R R 表示, R R R 表示 0 和 1 交替轮换的频累程度.

容易看出, R R R 是序列中 0 和 1 交替轮换的总次数加 1 。

Mood(1940) 提出关于这一问题的检验 : X 1 , X 2 , ⋯   , X n : X_{1}, X_{2}, \cdots, X_{n} :X1,X2,,Xn 是 一列由 0 或 1 构成的序列,假设检验问题:
H 0 : H_{0}: H0: 数据出现顺序随机 ↔ H 1 : \leftrightarrow H_{1}: H1: 数据出现顺序不随机,
R R R 为游程个数, 1 ⩽ R ⩽ n . 1 \leqslant R \leqslant n . 1Rn. 在零假设成立的情况下, X i ∼ b ( 1 , p ) , p X_{i} \sim b(1, p), p Xib(1,p),p 是 1 出现的概 率, 由 n 1 / n n_{1} / n n1/n 确定 , R , R ,R 的分布与 p p p 有关. 假设有 n 0 n_{0} n0 个 0 和 n 1 n_{1} n1 1 , n 1 + n 0 = n , 1, n_{1}+n_{0}=n, 1,n1+n0=n,
现任何一种不同结构序列的可能性是1 / ( n n 1 ) = 1 / ( n n 0 ) , /\left(\begin{array}{c}n \\ n_{1}\end{array}\right)=1 /\left(\begin{array}{c}n \\ n_{0}\end{array}\right), /(nn1)=1/(nn0), 注意到 0 游程和 1 游程之间是者差 1 , 1, 1, 于是得到 R R R 的条件分布为
$$
P(R=2 k)=\frac{2\left(\begin{array}{c}
n_{1}-1 \
k-1
\end{array}\right)\left(\begin{array}{c}
n_{0}-1 \
k-1
\end{array}\right)}{\left(\begin{array}{c}
n \
n_{1}
\end{array}\right)}
\

P(R=2 k+1)=\frac{\left(\begin{array}{c}
n_{1}-1 \
k-1
\end{array}\right)\left(\begin{array}{c}
n_{0}-1 \
k
\end{array}\right)+\left(\begin{array}{c}
n_{1}-1 \
k
\end{array}\right)\left(\begin{array}{c}
n_{0}-1 \
k-1
\end{array}\right)}{\left(\begin{array}{c}
n \
n_{1}
\end{array}\right)} .
$$

当数据序列的量很大时,即 n → ∞ n \rightarrow \infty n 时,零假设下,根据精确分布的性质可以
得到:
E ( R ) = 2 n 1 n 0 n 1 + n 0 + 1 var ⁡ ( R ) = 2 n 1 n 0 ( 2 n 1 n 0 − n 0 − n 1 ) ( n 1 + n 0 ) 2 ( n 1 + n 0 − 1 ) = ( E ( R ) − 1 ) ( E ( R ) − 2 ) n 1 + n 0 − 1 \begin{array}{c} E(R)=\frac{2 n_{1} n_{0}}{n_{1}+n_{0}}+1 \\ \operatorname{var}(R)=\frac{2 n_{1} n_{0}\left(2 n_{1} n_{0}-n_{0}-n_{1}\right)}{\left(n_{1}+n_{0}\right)^{2}\left(n_{1}+n_{0}-1\right)}=\frac{(E(R)-1)(E(R)-2)}{n_{1}+n_{0}-1} \end{array} E(R)=n1+n02n1n0+1var(R)=(n1+n0)2(n1+n01)2n1n0(2n1n0n0n1)=n1+n01(E(R)1)(E(R)2)
n 1 n 0 → γ \frac{n_{1}}{n_{0}} \rightarrow \gamma n0n1γ 时,则
E ( R ) = 2 n 1 ( 1 + γ ) + 1 , var ⁡ ( R ) ≈ 4 γ n 1 / ( 1 + γ ) 3 E(R)=\frac{2 n_{1}}{(1+\gamma)}+1, \quad \operatorname{var}(R) \approx 4 \gamma n_{1} /(1+\gamma)^{3} E(R)=(1+γ)2n1+1,var(R)4γn1/(1+γ)3
于是
Z = R − E ( R ) var ⁡ ( R ) = R − 2 n 1 / ( 1 + γ ) 4 γ n 1 / ( 1 + γ ) 3 → L N ( 0 , 1 ) Z=\frac{R-E(R)}{\sqrt{\operatorname{var}(R)}}=\frac{R-2 n_{1} /(1+\gamma)}{\sqrt{4 \gamma n_{1} /(1+\gamma)^{3}}} \stackrel{\mathcal{L}}{\rightarrow} N(0,1) Z=var(R) RE(R)=4γn1/(1+γ)3 R2n1/(1+γ)LN(0,1)
因此可以用正态分布表得到 p p p 值和检验结果. 这时,在给定水平 α \alpha α 后,可以用 近似公式得到拒绝域的临界值:
r 1 = 2 n 1 n 0 n 1 + n 0 [ 1 + Z α 2 n 1 + n 0 ] , r u = 2 n 1 n 0 n 1 + n 0 [ 1 − Z α 2 n 1 + n 0 ] r_{1}=\frac{2 n_{1} n_{0}}{n_{1}+n_{0}}\left[1+\frac{Z_{\frac{\alpha}{2}}}{\sqrt{n_{1}+n_{0}}}\right], \quad r_{\mathrm{u}}=\frac{2 n_{1} n_{0}}{n_{1}+n_{0}}\left[1-\frac{Z_{\frac{\alpha}{2}}}{\sqrt{n_{1}+n_{0}}}\right] r1=n1+n02n1n0[1+n1+n0 Z2α],ru=n1+n02n1n0[1n1+n0 Z2α]

Wilcoxon检验

要求:分布为对称分布

定理 2.1 X \quad X X 服从分布函数为 F ( θ ) F(\theta) F(θ) 的分布, 且 F ( θ ) F(\theta) F(θ) 关于 θ \theta θ 对称, 总体的对 称中心是总体的中位数之一。

  • R j + R_{j}^{+} Rj+ ∣ X j ∣ \left|X_{j}\right| Xj 在绝对值样本中的秩, 即 ∣ X j ∣ = ∣ X ∣ ( R j + ) \left|X_{j}\right|=|X|_{\left(R_{j}^{+}\right)} Xj=X(Rj+)
  • S ( x ) S(x) S(x) 表示示性函数 I ( x > 0 ) , I(x>0), I(x>0), 它在 x > 0 x>0 x>0 时为 1 , 1, 1, 否则为 $0 $。
  • 反秩(antirank) : 反秩 D j D_{j} Dj 是由 ∣ X D j ∣ = ∣ X ∣ ( j ) \left|X_{D_{j}}\right|=|X|_{(j)} XDj=X(j) 定义的.
  • 我们还用 W j W_{j} Wj 表示 与 ∣ X ∣ ( j ) |X|_{(j)} X(j) 相应的原样本点的示性函数, 即 W j = S ( X D j ) , W_{j}=S\left(X_{D_{j}}\right), Wj=S(XDj), 且称 R j + S ( X j ) R_{j}^{+} S\left(X_{j}\right) Rj+S(Xj) 为符号秩统计量。第j小的元素如果为正,则 W j = 1 W_j=1 Wj=1,若为负,则 W j = 0 W_j=0 Wj=0
  • Wilcoxon 符号秩统计量 定义为

W + = ∑ j = 1 n j W j = ∑ j = 1 n R j + S ( X j ) W^{+}=\sum_{j=1}^{n} j W_{j}=\sum_{j=1}^{n} R_{j}^{+} S\left(X_{j}\right) W+=j=1njWj=j=1nRj+S(Xj)
它是正的样本点按绝对值所得秩的和。

F ( x − θ ) F(x-\theta) F(xθ) 对称, 零假设为 H 0 : θ = 0 , H_{0}: \theta=0, H0:θ=0, 有下面 3 个定理.

定理 2.2 2.2 \quad 2.2 如果零假设 H 0 : θ = 0 H_{0}: \theta=0 H0:θ=0 成立 , , , S ( X 1 ) , S ( X 2 ) , ⋯   , S ( X n ) S\left(X_{1}\right), S\left(X_{2}\right), \cdots, S\left(X_{n}\right) S(X1),S(X2),,S(Xn) 独立于 ( R 1 + , R 2 + , ⋯   , R n + ) \left(R_{1}^{+}, R_{2}^{+}, \cdots, R_{n}^{+}\right) (R1+,R2+,,Rn+)

证明: \quad 事实上, 因为 ( R 1 + , R 2 + , ⋯   , R n + ) \left(R_{1}^{+}, R_{2}^{+}, \cdots, R_{n}^{+}\right) (R1+,R2+,,Rn+) ∣ X 1 ∣ , ∣ X 2 ∣ , ⋯   , ∣ X n ∣ \left|X_{1}\right|,\left|X_{2}\right|, \cdots,\left|X_{n}\right| X1,X2,,Xn 的函数, 而出自随机样本的 ( S ( X i ) , ∣ X j ∣ ) , i , j = 1 , 2 , ⋯   , n , j ≠ i \left(S\left(X_{i}\right),\left|X_{j}\right|\right), i, j=1,2, \cdots, n, j \neq i (S(Xi),Xj),i,j=1,2,,n,j=i 是互相独立的数据对, 因此我们只要试明 S ( X i ) S\left(X_{i}\right) S(Xi) ∣ X i ∣ \left|X_{i}\right| Xi 是互相独立的即可。事实上,
P ( S ( X i ) = 1 , ∣ X i ∣ ⩽ x ) = P ( 0 < X i ⩽ x ) = F ( x ) − F ( 0 ) = F ( x ) − 1 2 = 2 F ( x ) − 1 2 = P ( S ( X i ) = 1 ) P ( ∣ X i ∣ ⩽ x ) \begin{aligned} P\left(S\left(X_{i}\right)=1,\left|X_{i}\right| \leqslant x\right) &=P\left(0<X_{i} \leqslant x\right)=F(x)-F(0)=F(x)-\frac{1}{2} \\ &=\frac{2 F(x)-1}{2}=P\left(S\left(X_{i}\right)=1\right) P\left(\left|X_{i}\right| \leqslant x\right) \end{aligned} P(S(Xi)=1,Xix)=P(0<Xix)=F(x)F(0)=F(x)21=22F(x)1=P(S(Xi)=1)P(Xix)

定理 2.3 2.3 \quad 2.3 如果零假设 H 0 : θ = 0 H_{0}: \theta=0 H0:θ=0 成立 , , , S ( X 1 ) , S ( X 2 ) , ⋯   , S ( X n ) S\left(X_{1}\right), S\left(X_{2}\right), \cdots, S\left(X_{n}\right) S(X1),S(X2),,S(Xn) 独立于 ( D 1 , D 2 , ⋯   , D n ) \left(D_{1}, D_{2}, \cdots, D_{n}\right) (D1,D2,,Dn)

定理 2.4 2.4\quad 2.4 如果零假设 H 0 : θ = 0 H_{0}: \theta=0 H0:θ=0 成立, 则 W 1 , W 2 , ⋯   , W n W_{1}, W_{2}, \cdots, W_{n} W1,W2,,Wn 是独立同分布的, 其分布为 P ( W i = 0 ) = P ( W i = 1 ) = 1 2 . P\left(W_{i}=0\right)=P\left(W_{i}=1\right)=\frac{1}{2} . P(Wi=0)=P(Wi=1)=21.
证明 : \quad D = ( D 1 , D 2 , ⋯   , D n ) , d = ( d 1 , d 2 , ⋯   , d n ) , \boldsymbol{D}=\left(D_{1}, D_{2}, \cdots, D_{n}\right), \boldsymbol{d}=\left(d_{1}, d_{2}, \cdots, d_{n}\right), D=(D1,D2,,Dn),d=(d1,d2,,dn),
P ( W 1 = w 1 , W 2 = w 2 , ⋯   , W n = w n ) = ∑ d P ( S ( X D 1 ) = w 1 , S ( X D 2 ) = w 2 , ⋯   , S ( X D n ) = w n ∣ D = d ) P ( D = d ) = ∑ d P ( S ( X d 1 ) = w 1 , S ( X d 2 ) = w 2 , ⋯   , S ( X d n ) = w n ) P ( D = d ) = ( 1 2 ) n ∑ d P ( D = d ) = ( 1 2 ) n \begin{aligned} & P\left(W_{1}=w_{1}, W_{2}=w_{2}, \cdots, W_{n}=w_{n}\right) \\ =& \sum_{d} P\left(S\left(X_{D_{1}}\right)=w_{1}, S\left(X_{D_{2}}\right)=w_{2}, \cdots, S\left(X_{D_{n}}\right)=w_{n} \mid \boldsymbol{D}=\boldsymbol{d}\right) P(\boldsymbol{D}=\boldsymbol{d}) \\ =& \sum_{d} P\left(S\left(X_{d_{1}}\right)=w_{1}, S\left(X_{d_{2}}\right)=w_{2}, \cdots, S\left(X_{d_{n}}\right)=w_{n}\right) P(\boldsymbol{D}=\boldsymbol{d}) \\ =&\left(\frac{1}{2}\right)^{n} \sum_{d} P(\boldsymbol{D}=\boldsymbol{d})=\left(\frac{1}{2}\right)^{n} \end{aligned} ===P(W1=w1,W2=w2,,Wn=wn)dP(S(XD1)=w1,S(XD2)=w2,,S(XDn)=wnD=d)P(D=d)dP(S(Xd1)=w1,S(Xd2)=w2,,S(Xdn)=wn)P(D=d)(21)ndP(D=d)=(21)n
因此有 P ( W 1 , W 2 , ⋯   , W n ) = ∏ i = 1 n P ( W i = w i ) P\left(W_{1}, W_{2}, \cdots, W_{n}\right)=\prod_{i=1}^{n} P\left(W_{i}=w_{i}\right) P(W1,W2,,Wn)=i=1nP(Wi=wi) P ( W i = w i ) = 1 2 . P\left(W_{i}=w_{i}\right)=\frac{1}{2} . P(Wi=wi)=21.

符号秩的检验过程

假设样本点 X 1 , X 2 , ⋯   , X n X_{1}, X_{2}, \cdots, X_{n} X1,X2,,Xn 来自连续对称总体分布 (符号检验不需要这个假设). 在这个假定下总体中位数等于均值.

它的检验目的和符号检验是一样的, 即要 检验双边问题 H 0 : M = M 0 H_{0}: M=M_{0} H0:M=M0 或检验单边问题 H 0 : M ⩽ M 0 H_{0}: M \leqslant M_{0} H0:MM0 H 0 : M ⩾ M 0 , H_{0}: M \geqslant M_{0}, H0:MM0,
Wilcoxon 符号秩检验均步骤如下:
(1) 对 i = 1 , 2 , ⋯   , n , i=1,2, \cdots, n, i=1,2,,n, 计算 ∣ X i − M 0 ∣ ; \left|X_{i}-M_{0}\right| ; XiM0; 它们表示这些样本点到 M 0 M_{0} M0 的距离.
(2) 将上面 n n n 个绝对值排字,并找出它们蛇 n n n 个秩; 如果有相同的样本点,每 个点取平均秩.
∣ X i − M 0 ∣ \left|X_{i}-M_{0}\right| XiM0 的秩物和. 注意: W + + W − = n ( n + 1 ) / 2 W^{+}+W^{-}=n(n+1) / 2 W++W=n(n+1)/2.
(4) 对双边检验 H 0 : M = M 0 ↔ H 1 : M ≠ M 0 , H_{0}: M=M_{0} \leftrightarrow H_{1}: M \neq M_{0}, H0:M=M0H1:M=M0, 在零假设下, W + W^{+} W+ W − W^{-} W 应差不多. 因而,当其中之一很小时,应怀疑零假设;因此,取检验统计量 W = W= W= min ⁡ { W + , W − } . \min \left\{W^{+}, W^{-}\right\} . min{W+,W}. 类似地, 对 H 0 : M ⩽ M 0 ↔ H 1 : M > M 0 H_{0}: M \leqslant M_{0} \leftrightarrow H_{1}: M>M_{0} H0:MM0H1:M>M0 的单边检验取 W = W − ; W=W^{-} ; W=W;
H 0 : M ⩾ M 0 ↔ H 1 : M < M 0 H_{0}: M \geqslant M_{0} \leftrightarrow H_{1}: M<M_{0} H0:MM0H1:M<M0 的单边检验取 W = W + . W=W^+ . W=W+.
(5) 根据得到的 W W W 值, 查 Wilcoxon 符号秩检验的分布表以得到在零假设下的 p p p 值. 如果 n n n 很大要用正态近似,得到一个与 W W W 有关的正态随机变量 Z Z Z 的值, 再 查表得到 p p p 值,或直接在软件中计算得到 p p p 值。
(6) 如果 p p p 值小 (比如小于或寺于给定的显著性水平 0.05 ), 则可以拒绝零假设. 实际上显著性水平 α \alpha α 可取任何大于或等于 p p p 值的数. 如果 p p p 值较大,则没有充分 证据来拒绝零假设,但不意味着接受零假设.

  • W + W^+ W+的精确分布

以下给出计算 W + W^{+} W+ 概率的一般方法。首先, ∀ j \forall j j
E ( exp ⁡ ( t j W j ) ) = 1 2 exp ⁡ ( 0 ) + 1 2 exp ⁡ ( t j ) = 1 2 ( 1 + exp ⁡ ( t j ) ) E\left(\exp \left(t_{j} W_{j}\right)\right)=\frac{1}{2} \exp (0)+\frac{1}{2} \exp \left(t_{j}\right)=\frac{1}{2}\left(1+\exp \left(t_{j}\right)\right) E(exp(tjWj))=21exp(0)+21exp(tj)=21(1+exp(tj))
计算样本量为 n n n 时, W + W^{+} W+ 的母函数如下:
M n ( t ) = E ( exp ⁡ ( t W + ) ) = E ( exp ⁡ ( t ∑ j W j ) ) = ∏ j E ( exp ⁡ ( t j W j ) ) = 1 2 n ∏ j = 1 n ( 1 + e t j ) \begin{aligned} M_{n}(t) &=E\left(\exp \left(t W^{+}\right)\right)=E\left(\exp \left(t \sum j W_{j}\right)\right) \\ &=\prod_{j} E\left(\exp \left(t j W_{j}\right)\right)=\frac{1}{2^{n}} \prod_{j=1}^{n}\left(1+\mathrm{e}^{t j}\right) \end{aligned} Mn(t)=E(exp(tW+))=E(exp(tjWj))=jE(exp(tjWj))=2n1j=1n(1+etj)
母函数有展开式
M ( t ) = a 0 + a 1 e t + a 2 e 2 t + ⋯ M(t)=a_{0}+a_{1} \mathrm{e}^{t}+a_{2} \mathrm{e}^{2 t}+\cdots M(t)=a0+a1et+a2e2t+
则 $P_{H_{0}}\left(W^{+}=j\right)=a_{j} $。

  • W + W^+ W+的大样本分布

可利用正态近似。
E ( W + ) = E ( ∑ j W j ) = 1 2 ∑ j = 1 n j = 1 2 n ( n + 1 ) 2 = 1 4 n ( n + 1 ) var ⁡ ( W + ) = var ⁡ ( ∑ j W j ) = 1 4 ∑ j n j 2 = 1 24 n ( n + 1 ) ( 2 n + 1 ) \begin{array}{l} E\left(W^{+}\right)=E\left(\sum j W_{j}\right)=\frac{1}{2} \sum_{j=1}^{n} j=\frac{1}{2} \frac{n(n+1)}{2}=\frac{1}{4} n(n+1) \\ \operatorname{var}\left(W^{+}\right)=\operatorname{var}\left(\sum j W_{j}\right)=\frac{1}{4} \sum_{j}^{n} j^{2}=\frac{1}{24} n(n+1)(2 n+1) \end{array} E(W+)=E(jWj)=21j=1nj=212n(n+1)=41n(n+1)var(W+)=var(jWj)=41jnj2=241n(n+1)(2n+1)

在零假设下由此可构造大样本渐近正态统计量, 零假设下的近似计算如下:
Z = W + − n ( n + 1 ) / 4 n ( n + 1 ) ( 2 n + 1 ) / 24 → L N ( 0 , 1 ) Z=\frac{W^{+}-n(n+1) / 4}{\sqrt{n(n+1)(2 n+1) / 24}} \stackrel{\mathcal{L}}{\rightarrow} N(0,1) Z=n(n+1)(2n+1)/24 W+n(n+1)/4LN(0,1)
计算出 Z Z Z 值后,可由正态分布表查出检验统计量对应的 p p p 值, 如果 p p p 值过小, 则拒 她零假设 H 0 : θ = M 0 H_{0}: \theta=M_{0} H0:θ=M0. 小样本情况下使用连续性修正, 如下所示:
Z = W + − n ( n + 1 ) / 4 + C n ( n + 1 ) ( 2 n + 1 ) / 24 → L N ( 0 , 1 ) Z=\frac{W^{+}-n(n+1) / 4 + C}{\sqrt{n(n+1)(2 n+1) / 24}} \stackrel{\mathcal{L}}{\rightarrow} N(0,1) Z=n(n+1)(2n+1)/24 W+n(n+1)/4+CLN(0,1)
W + > n ( n + 1 ) / 4 W^{+}>n(n+1) / 4 W+>n(n+1)/4 时, 用正连续性修正, C = 0.5 C=0.5 C=0.5; 当 W + < n ( n + 1 ) / 4 W^{+}<n(n+1) / 4 W+<n(n+1)/4 时, 用 负连续性修正, C = − 0.5. C=-0.5 . C=0.5.

参数统计王星第三版pdf》是一本关于参数统计学的教材,由王星编写并发布。参数统计统计学中的一个重要分支,它不依赖于总体的概率分布形式,在数据分析中具有广泛的应用。 该书第三版是在前两版的基础上进行了修订和更新。它的主要内容包括参数估计、参数检验和参数回归等部分。参数估计主要讨论了核密度估计、分位数回归和最大似然估计等方法,它们可以用来估计总体的分布函数或密度函数。参数检验主要介绍了基于秩和秩相关的Wilcoxon符号秩检验、Mann-Whitney U检验和Kendall等相关性检验等方法,用于检验总体分布是否存在差异或相关性。参数回归则介绍了局部加权回归和核回归等方法,用于建立自变量和因变量之间的线性关系。 该书的特点是理论与实践相结合,通过大量的案例和实证研究来展示参数统计方法的应用。此外,书中还介绍了一些常用的统计软件和编程工具,如R语言和Python等,以帮助读者实际运用参数统计方法进行数据分析和建模。 《参数统计王星第三版pdf》对于统计学专业的学生和从事数据分析工作的人士都是一本很好的参考书,它系统地介绍了参数统计学的基本理论和方法,并给出了实际应用的例子和步骤。读者可以通过学习该书来掌握参数统计的基本原理和技巧,提高数据分析和建模的能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值