日捐一分钱可改善抑郁症状!?[特殊字符]

TLDR:该研究发现在线微慈善干预可有效缓解抑郁症状,情绪积极性发挥了关键的中介作用,干预无需社会互动,因此特别适合抑郁患者,但😈藏在细节里,解读结果需谨慎。

https://doi.org/10.1177/09567976251315679                  

研究背景

抑郁症(Depression)因其持续的情绪低落和快感缺失(anhedonia)而给个体和社会带来了沉重负担。虽然现有治疗方法有效,但其成本较高,尤其是对支付能力有限的患者而言,急需成本低廉且有效的干预措施。已有研究显示,较小金额的利他消费(prosocial spending)能提升幸福感(happiness),但此类干预是否能够缓解抑郁症状尚待证实。

研究方法

研究者开展了三个预注册的随机对照试验(randomized controlled trials, RCTs),共包括三个独立样本(N分别为125、296和462名抑郁症状个体),实验时长为2个月。干预组参与者每天在腾讯公益平台进行至少一分钱(¥0.01)的微慈善捐赠,而对照组为等待组。研究通过流行病学研究抑郁量表(CES-D)评估抑郁症状,通过积极与消极体验量表(SPANE)评估情绪积极性。

研究结果

  • 干预效果显著:与等待组相比,干预组抑郁症状显著降低(效应量Cohen’s d范围为-0.19至-0.46),情绪积极性显著提高(Cohen’s d范围为0.22至0.49)。

  • 情绪积极性作为中介变量:干预通过提高情绪积极性,有效降低了抑郁症状。

  • 捐赠金额影响干预效果:慷慨捐赠者的干预效果略优于最低金额捐赠者,但差异未达到统计学显著水平。

恶魔😈藏在细节里

研究者根据预注册方案排除了那些「重复错过任务(repeatedly missed the tasks)」的参与者,而作者解释为未完成慈善捐赠的参与者。这意味着研究的数据分析实际上是基于坚持并积极参与捐赠行为(干预措施)的个体,而不是最初随机分配的全部参与者。因此,作者报告的实际上是「接受干预的个体的平均治疗效应(Average Treatment Effect on the Treated, ATT)」,而非更严格的、反映真实世界情境的「总体平均治疗效应(Average Treatment Effect, ATE)」。如果存在个体特征(例如更严重的抑郁症状)同时影响了干预参与度和抑郁症状改善,这种做法可能导致选择偏差(selection bias)或碰撞偏差(collider bias),从而高估干预的真实效果。

换句话说,更严重抑郁症状的参与者可能更倾向于不坚持捐赠行为,并被排除在分析之外,这可能导致研究得出的干预效果过于乐观,无法准确反映一般人群或真正患有抑郁症状的人群的现实情况。因此,这一点的确构成了该研究设计和分析方法的一个重大潜在问题,需要在论文中清晰地讨论和阐明,以避免误导读者对干预效果的理解。

碰撞偏差(Collider Bias)

Directed Acyclic Graphs

我们可以把研究中的因素和结果想象成河流和支流的关系。当两条不同的支流(因素)都汇入同一个湖泊(中间变量),而研究者只专注于湖泊里的水时,就可能出现碰撞偏差。

假设你想研究两种不同因素(例如吃维生素和运动)对健康的影响。但你研究的对象只选择了那些体检结果健康的人(即把“健康”当成了碰撞变量)。如果吃维生素和运动都能分别提升健康,那么当你只看健康的人群时,可能会发现吃维生素的人运动较少,运动多的人则不太吃维生素,这样就产生了一种虚假的负相关关系(实际上,两者本身可能并不相互影响)。

研究者发现服用血管紧张素转换酶抑制剂(ACEIs)或血管紧张素受体阻滞剂(ARBs)的COVID-19患者,其死亡风险并未增加。然而,这个结论的前提是,该研究仅关注已经患有COVID-19的患者群体。这就存在了潜在的碰撞偏差(Collider bias)。具体原因如下:

Uploaded image

当研究只关注COVID-19感染的人群(图中的深色方框COVID-19)时,实际上人为地将COVID-19感染状态变成了一个「碰撞变量(Collider)」,即它同时受到两个独立因素的影响:ACEI/ARB使用以及其他风险因素。

此时的研究样本并非随机选择,而是筛选出的感染人群,这样会人为引入碰撞偏差。换句话说,COVID-19感染状态受到两种因素共同影响:

  • 可能是ACEI/ARB用药增加了感染风险;

  • 其他风险因素(如老年、慢性病患者)也独立增加了感染COVID-19的概率。

当你限定分析人群为感染COVID-19的患者时,便只看到了一个「特定」人群,这可能导致:

  • ACEI/ARB的使用看似与风险因素之间产生一个虚假的负相关关系,或者

  • ACEI/ARB的使用显得与较低死亡风险有关(即产生虚假的保护性效果),因为真正高风险的人可能因多种原因被排除或更难被纳入研究。

简单理解,就是你人为地限制了一个被多个因素影响的中间条件(COVID-19感染),而忽视了更广泛的人群特征,结果就可能与真实情况产生偏离。研究中仅分析COVID-19感染患者,可能导致因其他风险因素(如年龄或慢病)对COVID-19的影响被忽视,从而产生虚假的关联或掩盖真实因果关系。

打一个补丁

Fosbøl 等人意识到了研究可能存在的碰撞偏差,他们通过额外的分析确认 ACEI/ARB 使用者并不会更容易感染 COVID-19(这意味着箭头①可以被去除),因此COVID-19 不再是一个碰撞变量,从而消除了因样本筛选导致的偏差。这样,他们的研究结论(ACEI/ARB 不会影响 COVID-19 患者的死亡率)就更具可信度。

思考题:请绘制DAG并思考本推送中微慈善的研究如何打补丁。

参考

Holmberg, M. J., & Andersen, L. W. (2022). Collider bias. Jama, 327(13), 1282-1283.

内容概要:本文档是一份计算机软考初级程序员的经典面试题汇编,涵盖了面向对象编程的四大特征(抽象、继承、封装、多态),并详细探讨了Java编程中的诸多核心概念,如基本数据类型与引用类型的区别、String和StringBuffer的差异、异常处理机制、Servlet的生命周期及其与CGI的区别、集合框架中ArrayList、Vector和LinkedList的特性对比、EJB的实现技术及其不同Bean类型的区别、Collection和Collections的差异、final、finally和finalize的作用、线程同步与异步的区别、抽象类和接口的区别、垃圾回收机制、JSP和Servlet的工作原理及其异同等。此外,还介绍了WebLogic服务器的相关配置、EJB的激活机制、J2EE平台的构成和服务、常见的设计模式(如工厂模式)、Web容器和EJB容器的功能、JNDI、JMS、JTA等J2EE核心技术的概念。 适合人群:正在备考计算机软考初级程序员的考生,或希望加深对Java编程及Web开发理解的初、中级开发人员。 使用场景及目标:①帮助考生系统复习Java编程语言的基础知识和高级特性;②为实际项目开发提供理论指导,提升编程技能;③为面试准备提供参考,帮助求职者更好地应对技术面试。 其他说明:文档不仅涉及Java编程语言的核心知识点,还包括了Web开发、企业级应用开发等方面的技术要点,旨在全面提高读者的专业素养和技术水平。文档内容详实,适合有一定编程基础的学习者深入学习和研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值