风险区分度—IV、KS和分布

IV和KS是风控领域评估变量预测能力和模型区分度的重要指标。IV通过信息熵衡量好坏分布差异,受分箱影响;KS则通过累积分布的最大间隔来评估区分程度,不分箱时值最大。两者在不同场景下各有优势,IV适用于变量筛选,KS适用于模型性能评估。当IV增大,KS通常也会提高,但分箱会影响KS稳定性。
摘要由CSDN通过智能技术生成

       IV和KS是风控中常用的评估指标,用于衡量变量的预测能力和区分度。一般来说,IV和KS值越大,表示该变量的预测能力越强。本文从IV和KS以及两者之间的关系方面作一些思考。

一、IV值

       一般来说,IV计算用于筛选变量,常用来评估某变量的预测能力。其本质是从信息熵上比较好人分布和坏人分布之间的差异性(具体可参考之前的文章相对熵与IV、PSI的关系)。

1.PNG

       有一点需要注意的是IV的大小受到分箱的影响。一般在计算IV时,如果是数值变量,会选用卡方分箱(最优分箱)之后的结果;如果是类别变量,则可以用badrate编码进行降基处理后再计算IV。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值