重识别领域中常用的模型评价标准主要有累计匹配特征曲线(Cumulative Matching Characteristic curve, CMC)和平均查准率均值(mean Average Precision, mAP)两种。
最近在文章Deep Learning for Person Re identification: A Survey and Outlook中提出了一种新的模型评价标准mean Inverse Negative Penalty,即mINP,这里就该标准做一个记录。
mAP的缺点与 mINP的引入
上图中展示了两个匹配列表,其中共10个目标并仅有三个正确结果,绿色表示正确的匹配,。根据平均查准率(Average Precision, AP),第一个匹配列表的AP为0.77,第二个匹配列表的AP为0.7,按照的AP的评价标准,AP值越大的性能越好,因此第二个匹配的性能要优于第一个。
但是,第一个列表中虽然在最靠前的两个结果均正确,但是直到第十个才找到了第三个结果,第二个列表在排序第五的位置就找到了全部的正确结果,因此直观来讲,第二个匹配的性能应该要优于第一个。
衡量ReID的性能应基于一下假设:由于实际的ReID系统中常返回一个查询结果列表再交由人工筛选,一个好的ReID系统要求所有的目标应该都处于匹配列表中更靠前的位置。
以防我翻译不准给大家带来误解,这里给出原文:
In practical applications, the algorithm usually returns a retrieved ranking list for further manual investigation. For a good Re-ID system, the target person should be retrieved as accurately as possible, i.e., all the correct matches should have low rank values.
Negative Penalty
基于上述mAP的缺点,文章中为每一个匹配列表引入了负样本惩罚率(Negative Penalty, NP)的概念(自己翻译的,名词翻译不准的话大家请谅解)
对于第 i i i个query的匹配结果,其NP的计算方法如下:
N P i = R i h a r d − ∣ G i ∣ R i h a r d NP_{i}=\frac{R_{i}^{hard}-|G_i|}{R_{i}^{hard}} NPi=RihardRihard−∣Gi∣
其中 R i h a r d R_{i}^{hard} Rihard是最困难的样本唉匹配列表中的索引,即最后一个正确的匹配结果的索引位置,比如图中的列表1, R i h a r d = 10 R_{i}^{hard}=10 Rihard=10,因为其在第10个位置才找到了最后一个正确的结果。 ∣ G i ∣ |G_i| ∣Gi∣是全部正确的样本的数目,比如图中 ∣ G i ∣ = 3 |G_i|=3 ∣Gi∣=3。
这个公式的含义就是截止到最后一个正确的结果时,已经查出的样本中错误的样本所占的比例,因此NP的值越小,性能应该越好。当所有的正确结果都在最前面时,NP的值应该为 0 0 0。
mean Inverse Negative Penalty
由于传统的Rank-k和mAP均是数值越大性能越好,为了与这个关系保持一致,文章中便对NP进行了逆值,提出了逆置负样本惩罚率(Inverse Negative Penalty, INP)的概念。
由于
0
⩽
N
P
<
1
0\leqslant NP <1
0⩽NP<1,INP可取值如下:
I
N
P
=
1
−
N
P
=
∣
G
i
∣
R
i
h
a
r
d
INP=1-NP=\frac{|G_i|}{R_{i}^{hard}}
INP=1−NP=Rihard∣Gi∣
INP的值就与mAP和Rank-k的取值大小关系保持了一致。INP的含义就是截止到最后一个正确的结果时,已经查出的样本中正确的样本所占的比例
所有查询的样本的平均逆置负样本惩罚率(mean Inverse Negative Penalty, mINP)计算方法如下:
m
I
N
P
=
1
N
q
∑
i
=
1
N
q
(
1
−
N
P
i
)
=
1
N
q
∑
i
=
1
N
q
∣
G
i
∣
R
i
h
a
r
d
mINP=\frac{1}{N_q}\sum_{i=1}^{N_q}(1-NP_{i})=\frac{1}{N_q}\sum_{i=1}^{N_q}\frac{|G_i|}{R_{i}^{hard}}
mINP=Nq1i=1∑Nq(1−NPi)=Nq1i=1∑NqRihard∣Gi∣
关于NP,INP,mINP的翻译是我自己翻译的,大家有更好的翻译欢迎大家订正。
参考文献:
Ye M, Shen J, Lin G, Xiang T, Shao L, Steven C. H. Deep Learning for Person Re-identification: A Survey and Outlook[J]. arXiv preprint arXiv:2001.04193, 2020.