重识别模型新的评价标准-mINP

本文介绍了人脸识别重识别领域的新评价标准mINP,旨在解决mAP忽视匹配列表中目标位置的问题。mINP强调正确匹配在列表前端的重要性,更好地反映了实际应用中对高精度排名的需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

重识别领域中常用的模型评价标准主要有累计匹配特征曲线(Cumulative Matching Characteristic curve, CMC)和平均查准率均值(mean Average Precision, mAP)两种。

最近在文章Deep Learning for Person Re identification: A Survey and Outlook中提出了一种新的模型评价标准mean Inverse Negative Penalty,即mINP,这里就该标准做一个记录。

mAP的缺点与 mINP的引入

AP与NP
上图中展示了两个匹配列表,其中共10个目标并仅有三个正确结果,绿色表示正确的匹配,。根据平均查准率(Average Precision, AP),第一个匹配列表的AP为0.77,第二个匹配列表的AP为0.7,按照的AP的评价标准,AP值越大的性能越好,因此第二个匹配的性能要优于第一个。

但是,第一个列表中虽然在最靠前的两个结果均正确,但是直到第十个才找到了第三个结果,第二个列表在排序第五的位置就找到了全部的正确结果,因此直观来讲,第二个匹配的性能应该要优于第一个。

衡量ReID的性能应基于一下假设:由于实际的ReID系统中常返回一个查询结果列表再交由人工筛选,一个好的ReID系统要求所有的目标应该都处于匹配列表中更靠前的位置。

以防我翻译不准给大家带来误解,这里给出原文:

In practical applications, the algorithm usually returns a retrieved ranking list for further manual investigation. For a good Re-ID system, the target person should be retrieved as accurately as possible, i.e., all the correct matches should have low rank values.

Negative Penalty

基于上述mAP的缺点,文章中为每一个匹配列表引入了负样本惩罚率(Negative Penalty, NP)的概念(自己翻译的,名词翻译不准的话大家请谅解)

对于第 i i i个query的匹配结果,其NP的计算方法如下:

N P i = R i h a r d − ∣ G i ∣ R i h a r d NP_{i}=\frac{R_{i}^{hard}-|G_i|}{R_{i}^{hard}} NPi=RihardRihardGi

其中 R i h a r d R_{i}^{hard} Rihard是最困难的样本唉匹配列表中的索引,即最后一个正确的匹配结果的索引位置,比如图中的列表1, R i h a r d = 10 R_{i}^{hard}=10 Rihard=10,因为其在第10个位置才找到了最后一个正确的结果。 ∣ G i ∣ |G_i| Gi是全部正确的样本的数目,比如图中 ∣ G i ∣ = 3 |G_i|=3 Gi=3

这个公式的含义就是截止到最后一个正确的结果时,已经查出的样本中错误的样本所占的比例,因此NP的值越小,性能应该越好。当所有的正确结果都在最前面时,NP的值应该为 0 0 0

mean Inverse Negative Penalty

由于传统的Rank-k和mAP均是数值越大性能越好,为了与这个关系保持一致,文章中便对NP进行了逆值,提出了逆置负样本惩罚率(Inverse Negative Penalty, INP)的概念。
由于 0 ⩽ N P < 1 0\leqslant NP <1 0NP<1,INP可取值如下:
I N P = 1 − N P = ∣ G i ∣ R i h a r d INP=1-NP=\frac{|G_i|}{R_{i}^{hard}} INP=1NP=RihardGi
INP的值就与mAP和Rank-k的取值大小关系保持了一致。INP的含义就是截止到最后一个正确的结果时,已经查出的样本中正确的样本所占的比例

所有查询的样本的平均逆置负样本惩罚率(mean Inverse Negative Penalty, mINP)计算方法如下:
m I N P = 1 N q ∑ i = 1 N q ( 1 − N P i ) = 1 N q ∑ i = 1 N q ∣ G i ∣ R i h a r d mINP=\frac{1}{N_q}\sum_{i=1}^{N_q}(1-NP_{i})=\frac{1}{N_q}\sum_{i=1}^{N_q}\frac{|G_i|}{R_{i}^{hard}} mINP=Nq1i=1Nq(1NPi)=Nq1i=1NqRihardGi

关于NP,INP,mINP的翻译是我自己翻译的,大家有更好的翻译欢迎大家订正。

参考文献:
Ye M, Shen J, Lin G, Xiang T, Shao L, Steven C. H. Deep Learning for Person Re-identification: A Survey and Outlook[J]. arXiv preprint arXiv:2001.04193, 2020.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值