两个高斯分布乘积的推导及解释,BPMF 公式推导

两个高斯分布乘积服从高斯分布
BPMF模型中公式推导
高斯先验+ 高斯似然=高斯后验分布
然而,很多时候, 化简成 标准的形式是困难的。
本文考虑从一阶导数、二阶导数角度获得参数 μ,Λ=1σ2 μ , Λ = 1 σ 2 .

1. 两个高斯分布的乘积

假设 f(x)N(μ1,Λ11),g(x)N(μ2,Λ12) f ( x ) ∼ N ( μ 1 , Λ 1 − 1 ) , g ( x ) ∼ N ( μ 2 , Λ 2 − 1 ) 都是高斯分布,即:

f(x)=Λ12πexpΛ1(xμ1)22g(x)=Λ22πexpΛ2(xμ2)22 f ( x ) = Λ 1 2 π exp − Λ 1 ( x − μ 1 ) 2 2 g ( x ) = Λ 2 2 π exp − Λ 2 ( x − μ 2 ) 2 2

h(x)=f(x)g(x) h ( x ) = f ( x ) g ( x ) , 则 h(x) h ( x ) 也是高斯分布;正态分布的共轭先验是正态分布

h(x)=f(x)g(x)=Λ1Λ22πexpΛ1(xμ1)22Λ2(xμ2)22 h ( x ) = f ( x ) g ( x ) = Λ 1 Λ 2 2 π exp − Λ 1 ( x − μ 1 ) 2 2 − Λ 2 ( x − μ 2 ) 2 2

现在,我们想要获得 f(x) f ( x ) 的标准型,即获得其均值 μ μ ,方差 σ2=Λ1 σ 2 = Λ − 1 .

(1). 直接通过配方,化简:
这是一种常用的方法,但是多数时候化简挺复杂的;
最终的结果如下:

h(x)N(μ,Λ1)μ=σ22=μ1σ22+μ2σ21σ21σ22=μ1Λ1+μ2Λ2Λ1+Λ2Λ=1σ2=1σ21+1σ22=Λ1+Λ2 h ( x ) ∼ N ( μ , Λ − 1 ) μ = σ 2 2 = μ 1 σ 2 2 + μ 2 σ 1 2 σ 1 2 σ 2 2 = μ 1 Λ 1 + μ 2 Λ 2 Λ 1 + Λ 2 Λ = 1 σ 2 = 1 σ 1 2 + 1 σ 2 2 = Λ 1 + Λ 2

(2). 通过求导方法获得:

正态分布是一个抛物线,开口向下,均值处获得峰值;故 h(x)=0 h ( x ) ′ = 0 ,可以的获得均值;
曲线的弯曲程度由曲率决定,曲率公式:

K=|y′′|(1+y)3/2 K = | y ″ | ( 1 + y ′ ) 3 / 2

所以,对于正态函数而言, μ μ 处的曲率与 σ2 σ 2 成反比,恰好等于其二阶导数;值越大,说明曲线越平缓;越小,数据越集中在均值周围,曲线越陡峭;
因此二阶导数反映了其变化程度,协助我们获得精确度 Λ Λ .

通过以上分析,计算 μ,Λ μ , Λ 如下:

h(x)=CexpLL(Λ1+Λ2)x+μ1Λ1+μ2Λ2=0μ=μ1Λ1+μ2Λ2Λ1+Λ2 h ( x ) ′ = C ∗ exp L ∗ L ′ 即 : − ( Λ 1 + Λ 2 ) x + μ 1 Λ 1 + μ 2 Λ 2 = 0 μ = μ 1 Λ 1 + μ 2 Λ 2 Λ 1 + Λ 2

h(μ)′′=CexpL(L′′)=cL′′=c(Λ1+Λ2)σ2=Λ=Λ1+Λ2 h ( μ ) ″ = C ∗ exp L ∗ ( L ″ ) = c ∗ L ″ = − c ∗ ( Λ 1 + Λ 2 ) 则 , σ − 2 = Λ = Λ 1 + Λ 2


2. BPMF 公式推导


回顾PMF模型: 假设 U,V U , V 及误差都服从高斯分布;最大log-后验概率可得到模型最终的目标函数;我们发现最终的目标函数等价于带L2范数的均方误差。
但是PMF中涉及到超参数太多,我们需要多次交叉验证获得;这个是困难的,需要很强的调参技巧。
针对PMF的参数问题,BPMF提出可以利用贝叶斯推测来解决。假设参数的先验分布服从高斯分布,最后利用MCMC的gibbs 采样获得超参数及U,V。

假设 UN(μu,Λ1u),VN(μv,Λ1v),Ri,jUTiVjN(0,α1) U ∼ N ( μ u , Λ u − 1 ) , V ∼ N ( μ v , Λ v − 1 ) , R i , j − U i T V j ∼ N ( 0 , α − 1 ) . 同时参数 Ω={μ,Λ}N(w0,σ20) Ω = { μ , Λ } ∼ N ( w 0 , σ 0 − 2 ) .
现在,我们可以获得参数 Ω Ω 的后验概率(有了后验概率,就可以使用gibbs 采样器进行采样)

最关键的是我们获得 Ui U i 的后验概率:
现在,

Ri,jUTiVjN(0,α1)Ri,jN(UTiVj,α1)p(Ri|Ui,V,α)=jMα2πexpα(Ri,jUTiVj)22f(Ui)=Cexpα2Mj(Ri,jUTiVj)2f(Ui)N(μ1,Λ11)f(Ui)=0,μ1=(αRiVT)(αVVT)1,f(Ui)′′Λ1=αVVT. R i , j − U i T V j ∼ N ( 0 , α − 1 ) 则 , R i , j ∼ N ( U i T V j , α − 1 ) p ( R i | U i , V , α ) = ∏ j M α 2 π exp − α ( R i , j − U i T V j ) 2 2 ∝ f ( U i ) = C ∗ exp − α 2 ∑ j M ( R i , j − U i T V j ) 2 f ( U i ) ∼ N ( μ 1 , Λ 1 − 1 ) 根 据 f ( U i ) ′ = 0 , 得 到 μ 1 = ( α R i V T ) ( α V V T ) − 1 , 根 据 f ( U i ) ″ , 得 到 Λ 1 = α V V T .

* 重新定义问题:需要估计的参数是 Ui U i : *
现在已知似然函数 p(Ri|Ui,V,α) p ( R i | U i , V , α ) , 先验函数 p(Ui|μ0,Λ10) p ( U i | μ 0 , Λ 0 − 1 ) .**
后验概率 先验概率* 似然函数:

p(Ui|Ri,V,α)p(Ui|μ0,Λ0)p(Ri|Ui,V,α)CexpαMj(Ri,juTiVj)22Λ0(Uiμ0)22N(μ1,Λ11)N(μ0,Λ10)N(μ,Λ1) p ( U i | R i , V , α ) ∝ p ( U i | μ 0 , Λ 0 ) p ( R i | U i , V , α ) ∝ C ∗ exp − α ∑ j M ( R i , j − u i T V j ) 2 2 − Λ 0 ( U i − μ 0 ) 2 2 ∼ N ( μ 1 , Λ 1 − 1 ) N ( μ 0 , Λ 0 − 1 ) ∼ N ( μ , Λ − 1 )

其中 参数 μ,Λ μ , Λ 的解法有两种,(1)直接利用原始一阶导数、二阶导数求解;(2)第一节,我们已经获得两个高斯分布的后验参数,现在可以直接带入标准公式获得:

μ=(αVVT+Λ2)1(RiVα+Λ0μ0)Λ=αVVT+Λ0 μ = ( α V V T + Λ 2 ) − 1 ( R i V α + Λ 0 μ 0 ) Λ = α V V T + Λ 0

同理,我们获得V的后验概率,最后利用gibbs采样即可。

1

  • 7
    点赞
  • 50
    收藏
    觉得还不错? 一键收藏
  • 13
    评论
### 回答1: DS证据理论(Dempster-Shafer Theory of Evidence)是一种用于处理不确定性和不完整信息的数学理论。在DS证据理论中,将每个证据看作一个“证据支持度函数”,它表示该证据对不同假设的支持程度。通过合并不同证据的支持度函数,可以得到一个综合的支持度函数,从而得出最终的结论。 对于两个证据支持度函数A和B,它们的合成可以通过Dempster's rule进行计算。Dempster's rule是DS证据理论的核心公式之一,计算方式如下: 1. 计算A和B的交集,即A和B同时支持的假设的支持度。 2. 计算A和B的并集,即A和B支持的所有假设的支持度。 3. 计算A和B的冲突度量,即A和B支持的假设有多少是不一致的。 4. 根据冲突度量对支持度进行修正,得到综合的支持度函数。 通过Dempster's rule合成证据支持度函数,可以将不同证据的信息进行整合,得到更准确的结果。 ### 回答2: DS证据理论(Dempster-Shafer evidence theory)是一种用于合成不确定性证据的推理方法,它可以将多种证据的结果组合成一个综合的结果。其合成过程主要分为三个步骤:基本概率分配、合成规则和极大似然法。 首先,基本概率分配是将每种证据的不确定性量化成为基本概率分配函数(Basic Probability Mass Function,简称BPMF)的过程。基本概率分配是将确定性和不确定性合理地分配到每个可能的事件上。通过考虑证据对于每种可能事件的置信度,可以为每个事件分配一个权重。 接下来,合成规则是将多种证据的基本概率分配函数进行合并的过程。DS证据理论采用的主要合成规则是Dempster's combination rule。该规则通过计算不同证据的交叉影响度量来确定每个事件的最终概率。合成规则不仅考虑了证据的证据力量,还考虑了证据之间的可能互斥和相互依赖关系。 最后,极大似然法是一种使用DS证据理论的附加方法,用于消除证据中的冲突。通过寻找使得合成结果达到最大的某种证据分配,可以确定最终的结果。这种方法在证据之间存在矛盾或不一致时,可以让合成结果更加准确。 总而言之,DS证据理论通过基本概率分配、合成规则和极大似然法的综合运用,可以将多种证据结果合成为一个综合的结果。这种合成方法使得对不确定性的推理更加准确和可靠,为决策和推断提供了重要的工具。 ### 回答3: DS证据理论是一种用于合成两种证据结果的方法,它综合了Dempster-Shafer理论和证据理论的思想。DS证据理论基于概率推理和不确定性理论,通过量化和融合不同证据的不确定性来得出最终的结果。 在DS证据理论中,每一种证据都表示为一个信任分布函数,用来表示该证据对不同假设的支持程度。这个信任分布函数表示了证据支持某种假设的程度,其中每个假设的支持程度由一个置信度表示。 合成两种证据结果的过程可以分为两个主要步骤: 1. 信任度传播:首先,将每种证据的置信度按照一定规则进行组合,得到每个假设的信任度。这个规则可以是Dempster规则,它基于可能性和不可能性的计算,将两种证据的置信度进行合并。在这个阶段,两种证据的置信度被传播到所有可能的假设上。 2. 阈值设置:根据使用者设定的阈值,对所有可能的假设进行筛选,选出最合理的结果。这个过程可以根据需求进行调整,根据不同的应用场景来设置不同的阈值。 DS证据理论的优点是能够将不同证据的不确定性进行量化,以及能够进行合理的融合和推理。它适用于处理不完全和不确定的信息,为决策提供了一种有效的方法。然而,DS证据理论也存在一些限制,比如需要准确设定置信度和阈值,否则结果可能不准确。此外,证据之间的关联性也会对结果产生影响。 总而言之,DS证据理论通过将两种证据的置信度进行合成,量化和融合了不同证据的不确定性,以得出合理的结果。它在处理不完全和不确定性信息时具有一定的优势,但需要准确设定相关参数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值