浅谈知识蒸馏

1背景

深度学习在很多领域都取得了巨大的成功, 但是计算代价却非常昂贵,通常需要高性能的GPU进行计算。随着智能手机等小型化智能终端设备的不断发展, 在端侧设备上部署深度学习模型的需求也越来越强烈。然而当前的深度学习模型通常很大以至于难以部署到端侧设备上, 一个很自然的想法就是想办法减小模型的大小, 这就是当前模型压缩的出发点。知识蒸馏是模型压缩中一种常用的手段。
有人可能会说, 既然先找到一个大模型, 在从大模型压缩到小模型, 不是多此一举吗, 为什么不能一开始就设计一个小模型呢?这是因为直接找到一个性能可以媲美大模型的小模型是比较困难的。 模型压缩的方法算是一种曲线救国的方式吧。直接设计性能较好的小模型应该也是一个很有潜力的研究方向。

2 基本原理介绍

3 实践

可参考: 知识蒸馏(Knowledge Distillation)实例教程

参考资料:
【1】https://my.oschina.net/u/1416903/blog/4532261 一个知识蒸馏的简单介绍, 一看就懂
【2】https://zhuanlan.zhihu.com/p/90049906 知识蒸馏是什么, 一份入门随笔

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值