对大量的数据进行必要的统计学分析,并将统计的结果展现在论文中用于论证文章的观点和理论。这是一篇医学论文中统计学应用最常见的情况。
那么,关于医学SCI论文统计学处理与方法的选择,我们应该注意哪些内容?
一、关于统计学处理
在进行统计学处理时,首先要明白研究资料是计数资料还是计量资料,尽管是一个常识性的问题,但仍有不少作者搞混了。先分类再计数的资料叫计数资料,如A组30例,B组32例,可根据研究目的计算出阳性率、治愈率等。测定某项具体数值的资料叫计量资料,如身高、体重、脉搏、血压等许多物理诊断和化验结果。
在医学科研论文中,计数资料最常用的统计学方法是检验,计量资料最常用的是t检验。在研究设计时,就应根据研究资料的特点,决定假设检验的方法。在处理资料时,因均数和标准差是用来描述正态分布资料集中和离散趋势的指标,可否采用均数±标准差描述研究资料的分布特征,首先要看资料是否是正态分布,如果资料不是正态分布或者方差不齐时,应对资料进行转换处理,使其符合正态分布,方差齐性后采用t检验或方差分析,达不到上述要求,用秩和检验。
有的研究资料数据庞大,只能在表格描述中用阿.拉伯数字或特殊符号表示与比较对象的P值,如P>0.05,P<0.05,P<0.01,无法一一给出具体的P值。但有的作者既不交代使用的统计学方法,也不给出具体的P值,直接列出P<0.05或p>0.05,认为差异有统计学意义或无统计学意义,使读者对无法判断结果的可靠性。
关于统计学方法的选择
一、两组或多组计量数据的比较
1.两组数据:
1)大样本数据或服从正态分布的小样本数据
(1)若方差齐性,则作成组t检验
(2)若方差不齐,则作t’检验或用成组的Wilcoxon秩和检验
2)小样本偏态分布数据,则用成组的Wilcoxon秩和检验
2. 多组数据:
1)若大样本数据或服从正态分布,并且方差齐性,则作完全随机的方差分析。如果方差分析的统计检验为有统计学意义,则进一步选择合适的方法(如:LSD检验,Bonferroni检验等)进行两两比较。
2)如果小样本的偏态分布数据或方差不齐,则作Kruskal Wallis的统计检验。如果Kruskal Wallis的统计检验为有统计学意义,则进一步选择合适的方法(如:用成组的Wilcoxon秩和检验,但用Bonferroni方法校正P值等)进行两两比较。