
Python
文章平均质量分 74
Xionglingchu
金融民工,业余码农。
展开
-
Access share daily price from yahoo finance API
从yahoo finance取股票daily data的代码,只有open、close、high、low、volume 等基本数据import yfinance import requestsimport pandas as pdfrom pandas_datareader import data as pdrimport timeimport simplejson as jsonbg = "2021-01-12 03:59:59"ed = "2021-01-15 03:59:59"ti原创 2021-11-13 22:46:23 · 1108 阅读 · 0 评论 -
【深度学习1】神经网络NN原理介绍
前言为什么我们要使用NN?因为任何函数都可以用NN来无限逼近,小到最基础的逻辑函数,可以通过调整权重,用一层NN实现,大到复杂的函数,可以通过多层NN,每层多个cells的深度神经网络来实现概念介绍1、常见的激活函数2、最简单的一层NN3、何谓“训练”NN?如何训练?定义:我们训练/学习的是NN每一层的weights训练方法:Forward pass then backwar...原创 2020-03-08 17:55:45 · 1972 阅读 · 0 评论 -
【机器学习4】随机森林 Random Forest
1. 介绍定义:Random Forest可以视为若干棵Decision Tree的Ensemble集成。好处:随机森林比一般的决策树,具有更小的方差和variance,是目前应用最广法、且分类效果最好的一种机器学习算法。2. 步骤原始dataset的info:N = 3000,3000只股票;M = 8,包括high,low,close,open,volome,MA10,MA...原创 2020-03-05 14:21:12 · 444 阅读 · 0 评论 -
【机器学习5】逻辑回归 Logistic Regression
逻辑回归应用于二分类问题,如果是多分类问题,则需要用softmax1. Logistic(Logit) Function (i.e. Sigmoid function)Input为X在实数区间,Output为Y 在0-1之间(大多数时候,也用h(x)表示output)分类方法:Y = 1的概率 < 0.5,则不属于该类别; Y = 1的概率 > 0.5,则属于该类别构造步...原创 2020-03-04 23:11:32 · 209 阅读 · 0 评论 -
【机器学习1】支持向量机 (SVM)
支持向量机 Support Vector MachinePart I 相关理论简介:https://en.wikipedia.org/wiki/Support_vector_machine属性:有监督学习;分类算法应用:文本分析:分类图片分类手写字符的识别生物科学算法实质:(线性/非线性)约束下的优化问题;目标函数就是我们想要求解的分类平面(i.e. 超平面 hyperplane)分类及对应原理...原创 2018-01-23 15:11:20 · 346 阅读 · 0 评论 -
写量化策略时常用的技巧
1.善用panel保存数据说明:pandas有三种数据结构,分别是Series(一维),DataFrame(二维),panel(三维)例子:沪深300成分股所有股票[stock list]在某些特征指标如成交量、收盘价[indicator list]上的某时间区间内的历史序列[time series], [stock list] * [indicator list] * [time se...原创 2018-02-20 19:13:50 · 2727 阅读 · 4 评论 -
基于风险平价的资产配置策略
代码如下:####### step1import pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom sklearn.preprocessing import StandardScalerfrom scipy.optimize import minimize# 读取收盘价数据def read_data...原创 2018-03-09 00:28:43 · 12885 阅读 · 28 评论 -
单因子 & 多因子策略(基于JoinQuant)
一份朴实的声明。。。1. 基于joinquant,大部分代码是原作者所写,俺只是改写、补充。。。2. 源码见:https://www.joinquant.com/post/7753. 基于因子打分,不是因子回归(思路:单因子打分,分值赋权个股形成单因子组合,再等权加权单因子组合,变为多因子策略)----------------------------------------------------...原创 2018-02-22 02:57:54 · 5581 阅读 · 0 评论 -
Black Scholes Model & Implied Volatility
#Black Scholes Modelimport pandas as pdimport numpy as npimport mathimport scipy.stats as st import matplotlib.pyplot as pltfrom sklearn.preprocessing import StandardScalerfrom scipy.optimize...原创 2019-02-24 21:08:53 · 1747 阅读 · 0 评论 -
【机器学习3】基于决策树的Adaboost增强算法
定义:The AdaBoost algorithm is an iterative procedure that combines many weak classifiers to approximate the Bayes classifier C∗(x). Starting with the unweighted training sample, the AdaBoost builds a c...原创 2018-02-18 00:26:37 · 1096 阅读 · 0 评论 -
【机器学习2】决策树 Decision Tree
I 决策树定义(Decision Tree)组成:根节点(x属性变量)、内部根节点(x属性变量)、叶子节点(y分类变量) 实质:一系列if-then规则组成单层决策树(又称决策树桩,decision tree stump),是最简单最基础的决策树,由一个根节点和两个叶子节点组成,只按一个特征进行分类。II 决策树算法ID3(Quinlan, 1986)、C4.5、CART(Bre...原创 2018-02-17 22:39:13 · 500 阅读 · 0 评论 -
基本交易策略I
基本交易策略I目录1 均线策略1.1 C.J.Neely, P.A.Weller, Technical analysis in the foreign exchange market, Working Paper, Federal Reserve of St.Louis,2011.1) 策略2) 收益率回测1.2 Valeriy Zakamulin, Market timing with movin原创 2018-01-09 12:26:05 · 910 阅读 · 0 评论 -
利用python实现任意进制的相互转换
Most important!关键:十进制是bridge基本1: A进制(a) –> 十进制(d) d=int(a,A) 说明:A的取值为2,8,16基本2: 十进制(d)–> A进制(a) a=bin(d) a=oct(d) a=hex(d)So,利用以上两个基本知识,可以实现任意进制的随意转换啦~补充: 二进制的每三位–>八进制的一位 二进制的每四位–>原创 2017-05-08 21:06:33 · 2300 阅读 · 0 评论 -
2017 TIOBE Index
趋势图 Top20原创 2017-07-06 16:01:07 · 943 阅读 · 0 评论 -
Python基础知识复习II
Python基础知识复习II1 Python类型在 python 中,strings, tuples, 和 numbers 是不可更改的对象,而 list,dict 等则是可以修改的对象。1.1 数值型Python 支持四种不同的数值类型: 1) 整型(Int) - 通常被称为是整型或整数,是正或负整数,不带小数点。 2) 长整型(long integers) - 无限大小的整数,整数最后是一个原创 2018-01-01 02:45:49 · 993 阅读 · 0 评论 -
Python基础知识复习I
目录 1 文件导入 -1.1 txt文档 -1.2 csv文件 -1.3 xlsx文件(Excel) -1.4 SQL数据库中的table -1.5 tushare接口1 文件导入原始数据: 1.1 txt文档说明:如果txt文档中含有中文字符,并且不是用UTF-8格式编码的,那么在导入python之前要用sublime转码为UTF-8格式,再导入。代码1:默认数据原始文件的第一行原创 2018-01-01 00:15:06 · 454 阅读 · 0 评论 -
Pandas基础
import pandas as pdimport numpy as npimport matplotlib.pyplot as plt# numpyNumerical Python的简称,高性能科学计算和数据分析的基础包.Provides the most important data types for econometrics, statistics and numerical an原创 2018-01-01 03:33:34 · 504 阅读 · 0 评论 -
均线策略和新高策略【被diss版】
基本策略目录1 均线策略1.1 C.J.Neely, P.A.Weller, Technical analysis in the foreign exchange market, Working Paper, Federal Reserve of St.Louis,2011.1) 策略2) 收益率回测1.2 Valeriy Zakamulin, Market timing with moving a原创 2018-01-11 09:57:51 · 4022 阅读 · 0 评论 -
【可视化1】利用matplotlib.pylot画图
import pandas as pdimport numpy as npimport matplotlib.pyplot as plt1 读表uni=pd.read_table('/Users/anita/k3.txt')uni.dtypes #查看每一列的数据类型 qsrank object schoolname原创 2018-01-02 02:55:30 · 796 阅读 · 0 评论 -
文本分析基础练手题
coding: utf-8# 1, 写一个名为 test1_count()的函数,函数的第一个参数为一个文本文件的位置,如‘data/document1.txt’。要求函数的功能包括: # 1) 计算并打印出文本文件中所包含的词数(number of words), # 2) 打印出不重复的词的数量(the number of unique words), # 3) 打印出文本的行数, #原创 2018-01-02 03:34:40 · 445 阅读 · 0 评论 -
【参考】一个很low的project
# 一个bug未修复,在jp中可以抓数据,但是在窗口中不可以raw0=pd.read_table('/Users/anita/Desktop/python/IDX_Idxtrd.txt',names=['date','value','lowest','highest','return'])raw0.head(3)'/Users/anita/Desktop/python/IDX_Idxtrd.tx原创 2018-01-02 03:31:17 · 401 阅读 · 0 评论 -
利用Python进行数据挖掘(基础)
利用Python进行数据挖掘(基础)预测分类:预测分类指标(离散属性)——有监督学习 预测:建立连续值函数模型主要分类与预测算法回归分析:线性回归、非线性回归、Logistic回归(因变量为0或1)、岭回归(自变量之间具有多重共线性)、主成分回归(自变量之间具有多重共线性)、偏最小二乘回归模型决策树人工神经网络贝叶斯网络支持向量机:通过非线性映射,把低维的非线性原创 2018-01-17 14:27:07 · 1136 阅读 · 0 评论 -
Python · 数字类型 · 元组tuple
Python · 数字类型 · 元组tuple导语:1 创建元组 2 访问元组 3 修改元组 4 删除元组 5 元组内置函数 思考:元组的“变与不变”元组性质:类似字符串,元组可以索引和截取元组中的元素不可更改,但可以提取后再组合 - 1 创建元组tup1 = ('physics', 'chemistry', 1997, 2000);tup2 = (1, 2, 3, 4, 5原创 2017-04-11 13:06:02 · 1330 阅读 · 0 评论