单因子 & 多因子策略(基于JoinQuant)

一份朴实的声明。。。

1. 基于joinquant,大部分代码是原作者所写,俺只是改写、补充。。。
2. 源码见:https://www.joinquant.com/post/775

3. 基于因子打分,不是因子回归
思路:单因子打分,分值赋权个股形成单因子组合,再等权加权单因子组合,变为多因子策略
----------------------------------------------------------------------------------------

 
## step1:导入所需的库
import pandas as pdfrom pandas
import Series, DataFrame
import numpy as npimport statsmodels.api as sm
import scipy.stats as scs
import matplotlib.pyplot as plt
## step2:三个函数
# 函数1:获取因子
factors = ['B/M','EPS','PEG','ROE','ROA','GP/R','P/R','L/A','FAP','CMV']
#月初取出因子数值
def get_factors(fdate,factors):
    stock_set = get_index_stocks('000001.XSHG',fdate)
    q = query( valuation.code, balance.total_owner_equities/valuation.market_cap/100000000, income.basic_eps, valuation.pe_ratio, income.net_profit/balance.total_owner_equities, income.net_profit/balance.total_assets, income.total_profit/income.operating_revenue, income.net_profit/income.operating_revenue, balance.total_liability/balance.
  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值