【深度学习1】神经网络NN原理介绍

前言

为什么我们要使用NN?因为任何函数都可以用NN来无限逼近,小到最基础的逻辑函数,可以通过调整权重,用一层NN实现,大到复杂的函数,可以通过多层NN,每层多个cells的深度神经网络来实现



概念介绍

1、常见的激活函数

在这里插入图片描述

2、最简单的一层NN

在这里插入图片描述

3、何谓“训练”NN?如何训练?

3.1 Intuition

1)定义:我们训练/学习的是NN每一层的weights
2)训练方法:Forward pass then backward pass
在这里插入图片描述

  • 先向前计算出每一层的误差
    在这里插入图片描述
  • 再从后向前通过梯度下降更新每一层的weights
    在这里插入图片描述
    3)权重更新原则
    在这里插入图片描述
    上面这个公式我们一般也写作
    在这里插入图片描述
    Ps. 𝛼是学习率, E(W)是关于权重W的误差函数, s是加权和
    因为:
    • Assume
      在这里插入图片描述
    • Facts
      在这里插入图片描述
    • => Combining the assumption and fact, we can have that
      在这里插入图片描述

4)𝛿 的计算

  • 最后一层L
    在这里插入图片描述
  • 非最后一层l
    在这里插入图片描述
    Proof.(注意proof需要用到上面的assumption,g(x)是激活函数,是上一层的output
    在这里插入图片描述

3.2 训练步骤

Step1. 随机初始化化权重w
Step2. 重复下面三个算式直至收敛

    1)Forward pass:计算出每一层的x
    2)Backward pass:计算出每一层的𝛿
    3)更新权重
    在这里插入图片描述
Step3. 得到最后的权重

  • 0
    点赞
  • 7
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Xionglingchu

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值